
1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2983689, IEEE
Transactions on Knowledge and Data Engineering

1

g-Inspector: Recurrent Attention Model on Graph
Zhiling Luo IEEE Member, Yinghua Cui, Sha Zhao and Jianwei Yin

Abstract—Graph classification problem is becoming one of
research hotspots in the realm of graph mining, which has
been widely used in cheminformatics, bioinformatics and social
network analytics. Existing approaches, such as graph kernel
methods and graph Convolutional Neural Network, are facing
the challenges of non-interpretability and high dimensionality.
To address the problems, we propose a novel recurrent attention
model, called g-Inspector, which applies the attention mechanism
to investigate the significance of each region to make the results
interpretable. It also takes a shift operation to guide the inspector
agent to discover the next relevant region, so that the model
sequentially loads small regions instead of the entire large
graph, to solve the high dimensionality problem. The experiments
conducted on standard graph datasets show the effectiveness of
our g-Inspector in graph classification problems.

Index Terms—Graph Classification, Graph Mining, Recurrent
Neural Network, Reinforcement Learning

I. INTRODUCTION

As a prevalent data structure, graph has been widely used
to model key features and complex relationships for compli-
cated objects, such as molecular graph structures, biological
protein-protein interaction networks and social networks [1].
Many complex problems in the areas of cheminformatics,
bioinformatics and social network analytics can be formulated
as graph problems and solved by leveraging graph mining
techniques [2]. In this field, graph classification has been a
main research branch and a hot topic as well, which assigns
labels to graphs [3].

Graph classification is of highly practical significance in
a wide variety of real-world applications, such as drug ac-
tivity predictions, toxicology tests, and categorizing scientific
publications [4][5][6]. For example, in molecular medicine,
representing a chemical compound as a graph can help quickly
judge whether the compound has the inhibiting effect on
a specific cancer cell, which can significantly reduce time,
efforts and excessive resource on drug testing [4][7].

Existing approaches for graph classification can be roughly
divided into three categories. The first category is subgraph
methods, which classifies graph object by subgraph pat-
terns [3][8]. The second category is graph kernel which
leverages kernel methods to compute the similarity among
graphs [9][10]. The similarity is computed based on the entire
graph, and all the subgraph structures in the graphs were
treated fairly. It is ambiguous how each structure contributes to
the classification. The third category is graph neural networks
(GNNs), which applies deep learning based methods on graph
domain [11][12][13] [14][15][16].It is hard to know the signif-
icance of each feature for the classification, since the features

Z. Luo, Y. Cui, S. Zhao and J. Yin are with the Department of Computer
Science, Zhejiang University, Hangzhou, China, 310027.
E-mail: {luozhiling, yhcui, szhao, yjw}@zju.edu.cn

are automatically integrated through deep neural networks.
Taken together, the methods in both of the categories cannot
decide which structure is important to the graph classification,
and thereby it is difficult to interpret the results. Consequently,
it is hard to retrieve valuable knowledge from graphs to
support many practical applications. Meanwhile, there is no
clear boundary among multiple different classes.

Graph objects can be with up to billions of vertices and
edges in practical applications, such as various social net-
works. Not all the subgraph structures are helpful for clas-
sification. It is natural to select the relevant structures and
ignore the irrelevant ones so as to make results interpretable.
Motivated by the idea, we introduce an attention mechanism
to select a series of task relevant regions to pay attention to. In
this task, a region refers to a neighborhood subgraph structure
of a given central vertex.

Attention has become an essential part of deep learn-
ing models and achieved great success in various tasks,
e.g. machine translation[17], image classification[18], cap-
tion generation[19] and speech recognition[20]. The attention
mechanism helps to reduce the number of parameters, and
improve computational efficiency[21]. Moreover, adopting the
attention mechanism make results interpretable [19]. One can
understand the process of the model by visualizing the regions
where the attention is paid to.

Unfortunately, the attention mechanism cannot be directly
applied for graph classification. In the aforementioned work,
the data is well-structured and with determined and low
dimensionality, such as image, text or video. However, the
size of different graphs is variational, and a space with a high
dimensionality equal to that of the largest graph is required to
represent different graphs.

In this paper, to address the problem, we propose a novel
recurrent attention model, called g-Inspector, where we intro-
duce an inspector module applying the attention to investigate
the significance of each region to classification. We also design
a shift operation to guide the inspector to discover the next
relevant region under the rule of reinforcement learning. By the
recurrent process consisting of attention inspection and shift
operation, we sequentially load small relevant regions instead
of the entire graph, to avoid the high dimensionality problem.
The main contributions of this paper are as follows:
• The recurrent attention model, g-Inspector, overcomes the

challenge of high dimensionality problem. Moreover, it
is interpretable owing to the ability of measuring the
contribution of each region to the classification.

• We introduce a shift operation across the graph which
works under the reinforcement learning rule. It adaptively
selects a series of task relevant regions instead of search-
ing the entire graph, and significantly prunes the search
space.

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2020 at 07:57:25 UTC from IEEE Xplore. Restrictions apply.

zhaosha
高亮

zhaosha
高亮

zhaosha
高亮

zhaosha
高亮

zhaosha
高亮

zhaosha
高亮

zhaosha
高亮

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2983689, IEEE
Transactions on Knowledge and Data Engineering

2

• The experiments conducted on public graph datasets
verify the accuracy, scalability and parameter selection
of the model.

To better illustrate our work, we organize the remaining part
of this paper as follows. Section II briefly reviews the related
researches from literature and summarizes their advantages
and disadvantages in solving graph classification problem.
Section III, formalizes this problem, introduces the g-Inspector
model and its training method. Section IV reports our exper-
imental result on open datasets. The conclusion and future
work is discussed in section V.

II. RELATED WORK

In this section, we briefly review the literature on graph clas-
sification, which can be roughly divided into three categories:
subgraph methods, graph kernels and GNNs. Besides, we take
a quick look at the research studies on attention mechanism
and its application on graphs.

As the first category, subgraph methods leverage subgraph
patterns for graph classification. For example, gSpan ex-
plored depth-first search to mine frequent subgraphs[22]. gSSC
performed semi-supervised feature selection for graphs in a
progressive way together with the subgraph feature mining
process[4]. Pan et. al. [3] introduced a boosting method, espe-
cially designed fro cost-sensitive classification. An incremental
subgraph feature selecting technique is proposed in [8]. The
major drawback of these subgraph methods is the limitation
on scalability. The high-dimension challenge comes with the
growth of graph size has not been explored well and has high
computational complexity.

The second category on graph classification is graph kernel
based methods. The original purpose of the kernels on graphs
was to measure the similarity of nodes on a single graph[23].
Graph kernels allow kernel-based learning approaches such as
SVMs to work directly on graphs. Some variants have con-
sidered that the similarity can be measured between different
graphs[24], subgraphs or certain graphlets[10]. However, the
features extracted from graphs that are used to compute the
kernel matrix are not independent[9], and all graph kernels
have a training complexity at least quadratic in the number of
graphs which is infeasible for large-scale problems[25].

In the third category, graph neural networks(GNNs) extend
existing neural network methods to work with graph-structured
data. Diffusion CNNs[13] learned diffusion-based represen-
tations from graph-structured data by scanning a diffusion
process across each node. NgramCNN [12] studied the Ngram
on a graph adjacency matrix and diagonal convolution to
extract subgraph features. PSCN[11] constructed the receptive
fields by extracting locally connected regions from graphs.
DGCNN[26] proposed an end-to-end deep learning architec-
ture with a spatial graph convolution layer and a SortPooling
layer. DiffPool[27] is a differentiable graph pooling module
which can be combined with existing GNNs to extract the hi-
erarchical representations of graphs. GNN is computationally
expensive because it required many iterations between gradient
descent steps, and the network’s behavior is hard to explain.

Some studies have tried to apply the attention mechanism
on graphs for graph representing [28][29]. Choi et al. proposed

GRAM[28], an attention model for healthcare representation
learning, which is based on medical ontology and only ap-
plicable on directed acyclic graphs. Petar et al. introduced
GATS[29], graph attention networks which focused on node
classification of graph-structured data by using attention to
compute the hidden representation of each node. Lee et
al. proposed MCN[30], a motif-based graph attention model
for node classification task, which generalizes GCNs by us-
ing weighted multi-hop motif-induced adjacencies to capture
higher-order neighborhoods. Compared with these studies, we
use an attention mechanism for graph classification instead
of using graph representation directly. Specifically, our model
uses an inspector module to select attention regions instead of
learning attention weights.

We have noticed the publication of another research apply-
ing attention on graphs, GAM [31], which is independent and
simultaneous with ours. Coincidentally, both their proposed
model GAM and our work are inspired by the recent work on
the visual attention-based model, RAM[18]. However, GAM
is significantly different from ours, and the main differences
are as follows: (1) Our g-Inspector has better scalability. It
integrates graph structure feature, vertex/edge attributes at the
same time, while GAM can only handle the vertex attributes.
(2) At each time step, our g-Inspector extracts a subgraph
instead of visiting a single node in GAM. More subgraph
information can be collected and inferred, which makes it
possible for the inspector to gain more information about
the graph and make better decisions. (3) In GAM, the step
module takes a step from the current vertex to one of its one-
hop neighborhood. Our g-Inspector takes the shift operation
to expand the scope of observation rather than just a small
portion of the graph.

III. PROPOSED METHOD

A. Problem definition

A graph G is defined by a tuple (V,E, fv, fe,Sv,Se) where
V = {vi}|V |i=1 is the set of vertices and E ⊆ V × V is
the set of edges. An edge in E connecting vertex vi with
vertex vj can be denoted as (vi, vj), where vi, vj ∈ V . Sv
is the set of vertex-label, or called node attribute, and Se
the set of edge-label, or called edge attribute, respectively.
fv : V → Sv is the assignment from a vertex to a vertex-label.
Similarly, fe : E → Se is the assignment mapping from an
edge to an edge-label. Both Sv and Se can either be qualitative
attribute or quantitative attribute. Consider that by modeling
a social network as a graph, the vertex represents a person,
and the edge represents the friendship relation. The person’s
gender, age and preference are the vertex-labels. A qualitative
attribute is the gender, whose Sv= {Male, Female, Others}.
A quantitative attribute is the age, whose Sv is the integer
number> 0. In this way, our problem framework covers both
the qualitative and quantitative attributes.

With graph and basic elements formally defined, we can
describe the following classification problem.

Definition 1 (Graph Classification) Given a collection of
graphs G = {G1, · · · , Gn}, let L = {l1, · · · , lK} denote the

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2020 at 07:57:25 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2983689, IEEE
Transactions on Knowledge and Data Engineering

3

Fig. 1: Method overview

set of K class labels, learn an assigning function f : G → L
that maps a graph to one class label in L.

Graph classification tasks are associated with the whole graph,
which aim to estimate the label of entire graph object. Like
other classification problems, the key is to extract the features
of input, namely the graph, and then quantify their contri-
butions to the class labels. The challenges come from three
aspects.
• Feature Complexity Challenge It is difficult to simulta-

neously cover two different kinds of graph features, one
of which is the connection information from subgraph
structures, and another the vertex/edge attributes. For
example, GAM [31] can only handle the graphs with
attributes. Our idea is to encode the attributes by merg-
ing vertex-labels, edge-labels and the graph embedding
vectors together.

• High Dimensionality Challenge The size of a graph ob-
ject can be very large. Loading the entire graph cause the
high dimensionality problem. Our idea is to sequentially
load small relevant regions of the graph via an inspection
network.

• Interpretable Ability Challenge Most existing methods
cannot interpret the results. In g-Inspector, we introduce
an attention mechanism to measure the contribution of
each region, making the results interpretable.

Facing these challenges, we combine together these possible
ideas to build a complete model, called g-Inspector.

B. Method overview

The overview of our is shown in Fig. 1, which consists of
four parts. (1) Encoder of graphs to embed the graph structure
and vertex/edge-label. (2) Inspection network, containing the
inspector to capture a part of the graph, and taking shift
operation to efficiently shift the inspector on the graph. (3)
Core network to keep the memory from previously observed
subgraph features and merge the newly captured information
by a recurrent cell. (4) Action network to guide the shift of the
inspector and predict the classification label. These four parts
are detailed illustrated one-by-one in the rest of this section.

C. Encoder

To overcome the feature complexity challenge, we leverage
an encoder to merge the structural information with the
attributes of vertexes and edges. For a graph G, each vertex v
is encoded as a vector M(v) consisting of three parts.
• ψ(v;G) is the embedding vector of v in the graph G.
• φ(fv(v); θvφ) is the encoding of the vertex attribute pa-

rameterized by θvφ.
• E(vi,v)[φ(fe((vi, v)); θeφ)] is the expectation on encoding

of the edge attribute parameterized by θvφ. (vi, v) de-
notes any edge connecting v, and whose encoding is
φ(fe((vi, v)); θeφ.

In summary, given a vertex v in graph G, M(v) repre-
sents the vertex feature with both structural information and
attributes considered. Without considering the attributes of
vertex or edge, we only take the structure of graph into
account in practice. For the implementation, we employ
DeepWalk as ψ, which can encode the relationship between
the vertices in a continuous vector space with a relatively
low dimensionality[32]. Other embedding algorithms, e.g.
node2vec could be a good choice. The slightly promotion or
demotion of accuracy caused by replacing different embedding
algorithm such as replacing Deepwalk by node2vec is not our
major technical contribution.

D. Inspection network

The inspection network is the essential component of our
method, which observes a task relevant region of graph and
shifts its central vertex under the instructions from the action
network. A region refers to a neighborhood subgraph structure
of a given central vertex.

1) Inspector: Given the whole graph G, the inspector
collects the subgraph features from a region determined by
a central vertex v. To specify the region of v, we leverage the
concept of neighborhood.

Definition 2 (k-hop neighborhood) ∀v ∈ V , let Nk(v) de-
note the k-hop neighborhood of vertex v. Nk(v) can be defined
in a recursive form

Nk(v) =

{v} if k = 0

{u|u ∈ (V −
⋃k−1
i Ni(v))∧

∃v′ ∈ Nk−1(v), (u, v′) ∈ E} ow.
(1)

With the help of neighborhood Nk(v), we can describe the
region around v from variant granularity.

Definition 3 (k-order region) For a vertex v in graph G, its
k-order region is the vertex setRk(v) which is also recursively
defined:

Rk(v) =

{
N0(v) if k = 0

Nk(v)
⋃
Rk−1(v) ow.

(2)

For the smallest granularity, the region has only one vertex,
namely v itself.

To take use of these regions, given the central vertex v, the
inspector mixes the vertex features from its k-order region in
two ways: The first and straight-forward way is the stacked

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2020 at 07:57:25 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2983689, IEEE
Transactions on Knowledge and Data Engineering

4

k-order region which take average of all regions whose order
is less than k.

ρ(v;G) =
k∑
i=1

Ev′∈Ri(v)[M(v′)] (3)

The second way is introducing the decay factor γρ ∈ (0, 1) as
the stacked decay k-order region and give the i-order region
with weight γi−1

ρ .

ρ(v;G) =
∑
i=1

γi−1
ρ Ev′∈Ri(v)[M(v′)] (4)

In practice, the former way is easy to implement by setting
k as a constant but hard to generalize on different graph
datasets. Therefore, by default, we take use of Eq. (4) and stop
summation at n-order region if γnρ is smaller than a constant
threshold.

In summary, ρ(v;G) represents the mixed features from all
observing regions around vertex v by inspector.

2) Shift on graph: The inspector takes only the features
from the region around v. In order to observe more informa-
tion, we can shift the inspector on the graph. The procedure is
elaborated upon below. Given the entire graph G, consider that
at the time step t, the inspector stays at vt, and then ρ(vt;G)
is observed. At the next step t + 1, the inspector shifts from
vt to vt+1 under the instruction dt, which is generated from
action network and will be discussed later. At vt+1, ρ(vt+1;G)
is observed. To explain how to get vt+1 from vt in detail, we
introduce a distance metric at the vertex.

Definition 4 (Distance between Vertices) Given a graph G,
the distance rvi,vj between vi ∈ V and vj ∈ V is the
Euclidean distance ‖M(vi)−M(vj)‖2 on feature matrix.

Based on distance metric, we prepare a ranking structure D
representing the relatively distance between each two vertices.
for each vertex vi, we rank all vertices in a descending order
in terms of the distance from vi. We use notation D(vi, j) to
represent the vertex having j-th smallest distance from vi. It
ensures that

∀vi ∈ V, k ∈ 1, ..., |V |, rvi,D(vi,k) ≥ rvi,D(vi,k−1). (5)

Note that D is independent with the inspector and can be
computed off-line. With the help of D, we can localize any
vertex by describing the order and location with respect to
another vertex. For example, consider the graph in Fig. 2 (a),
we can localize the green vertex, by pointing out the relative
position with respect to the red one (v1), namely D(v1, 3).
Based on this mechanism, we can define the atomic shift
operation on an integer instruction d.

Definition 5 (Atomic Shift) Given the central vt of the in-
spector at the time step t, the next observation central vt+1 =
D(vt, d) is determined by instruction d.

To improve the efficiency, we consider the serial shift at one
step. For the serial shift, the instruction d = {di}mi=1 is a
vector, used to guide the shift of the inspector, where each
dimension is a scalar corresponding to an atomic operation.

At each time step t, the initial position of the inspector is at
the previous central vertex vt−1, according to the instruction

(a)
(b)

Fig. 2: (a) Atomic Shift Operation: Given a graph G, the start
vertex vi and a instruction d = 3. The inspector shifts to the
green vertex with the 3rd smallest distance, i.e. D(vi, 3) = vj .
(b) Serial Shift Operation: A serial shift operation dt−1 with m-
dimensionality, consists of m atomic shift operations.

vector dt−1 = {d1
t−1, · · · , dmt−1}. The inspector takes the first

shift operation from the current vertex vt−1 to an intermediate
vertex calculated by D(vt−1, d

1
t−1), then uses this intermediate

vertex as the start of the second atomic shift operation to
get the next start vertex according to d2

t−1. The rest can be
repeated in the same manner. After m times of atomic shift
operations, the inspector moves from the original start node
vt−1 to vt, see Fig. 2 (b).

Definition 6 (Serial Shift) Given the central vertex vt−1 of
the inspector at time step t− 1 and instruction dt−1, the next
observation central vertex vt = v̂m where

v̂i =

{
vt−1 if i = 1

D(v̂i−1, dit−1) ow.
(6)

The detailed procedure is as follows.
step 1 At each time step t, the initial position of the

inspector is at the previous central vertex vt−1. And
then the inspector receives the instruction vector
dt−1 = {d1

t−1, · · · , dmt−1}. Setting the intermediate
vertex v̂1 = vt−1 and repeating step 2 by taking
iterator i ∈ {1, ...,m}.

step 2 Taking an atomic shift operation on v̂i−1 under
instruction dit−1 and setting the result as the inter-
mediate vertex v̂i = D(v̂i−1, dit−1).

step 3 When i = m, setting vt = v̂m.
For a large graph object, the serial shift is more efficient,

which is studied in the experimental part. In the following
discussion, we use vt = fj(vt−1,dt−1;G) to represent the
shift procedure.

The structure of the inspection network, shown in Fig.
3, which integrates two features as a feature vector at by
a two-layer neural network. The first feature is the vertex
feature ρ(vt;G) derived from the region by the inspector. The
second feature is the instruction dt. The inspection network,
illustrated in Fig. 3, is formalized as follows

zd = σ(dt−1; θ0
a)

zσ = σ(ρ(vt;G); θ1
a)

at = σ([zd, zσ]; θ2
a)

(7)

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2020 at 07:57:25 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2983689, IEEE
Transactions on Knowledge and Data Engineering

5

Fig. 3: Inspection Network

where zσ and zd are intermediate variables, θa = {θ0
a, θ

1
a, θ

2
a}

is the network parameter, [·, ·] is the vector concatenation
operation and σ(·) is the activation function.

In summary, the inspector module leverages the shift oper-
ation, especially serial shift operation, to observe a serial of
regions of original graph under the instructions and compute
the features at.

3) Inspector initialization: In the inspector module, despite
the trainable parameters θa, the output features at is impacted
by two factors: the instructions and the initial vector v0. The
initial vector, representing the inspector center v at time temp
t = 0, determines which region is observed at first.

For each input graph, three methods available can be used
to initialize the inspector center v0. The simplest one is to
randomly select a vertex from the input graph. An ideal
method is to choose v0 from the dense area of the input graph.
Also, we can also get a vertex v0 under the expert’s guidance.

Our g-Inspector is not sensitive to the initial value. Each
vertex and its neighbor region has an implicit contribution
score to classification label. If initializing the start at the vertex
with high score, the model can easily achieve good accuracy. If
at the vertex with low score, our g-Inspector will shift quickly
leaving current vertex by the shift instruction vector with a
large value. And this policy is well trained by reinforcement
rule in training phase.

E. Core network

The core network in the g-Inspector model, is a recurrent
network maintaining a hidden state to keep the memory from
previously observed subgraph features. In the model, the
number of hidden layers, denoted by T , indicates that the
inspector has observed the graph for T times.

The hidden state, initialized randomly and integrates its
previous memory ht−1 with the feature at obtained by the
inspection network. Formally speaking, ht = fh(ht−1, at; θh)
where θh is the neural network parameter. The hidden state
explicitly encodes the inspector’s knowledge of the graph, such
as subgraph structures and attributes.

F. Action networks

The hidden state ht contains all information that the inspec-
tor has collected from previous observations. Two actions are
executed based on the hidden state at each step:

1) Generating the instruction dt = fd(ht; θd) by the shift
network, determining where the inspector will explore
in the next step.

2) Predicting the label l̂t of the input graph by the classi-
fication network which applies softmax function.

Pr(l̂t = i) =
exp fc(ht; θc)i∑
j exp fc(ht; θc)j

(8)

Besides, the action network provides guidance as to the time
point to stop observing the graph when the inspector has col-
lected sufficient information to make the accurate prediction.

From the perspective of reinforcement learning, the inspec-
tor is an agent interacting with the environment, i.e. the input
graph, via a Partially Observable Markov Decision Process
(POMDP). At time step t, the inspector, collects the partially
observation at (see Eq. (7)), receives the reward signal rt from
the environment, and makes two actions: generating the shift
instruction dt and predicting label l̂t. Given the state, actions
generated from actions networks are implicitly determined by
the policy π((dt, l̂t)|s1:t; θd, θc) where s1:t is the memory
on history s1:t = a1,d1, l̂1, · · · , at−1,dt−1, l̂t−1, at, which
can be replaced by the hidden state ht. The parameters of
policy are estimated by optimizing the accumulative reward
R =

∑T
t=1 rt. In our graph classification task, when the

classification result is correct, let rT = 1, otherwise let rT = 0.
Taking the g-Inspector as a whole agent, the entire pol-

icy, denoted by π((dt, l̂t, ht)|ρ(v,G), ht−1; Θ) is determined
by Θ = {θh, θa, θd, θc}.Then, the total reward J(Θ) =
Ep(s1:T ;Θ)[R] is also the function of Θ.

Theorem III.1 (Sufficient Condition on Classification)
Given the graph G, the optimal Θ which maximizes J(Θ) is
the optimal classifying mapping by assigning f(G; Θ) = l̂T .

The theorem III.1 shows that optimal solution Θ =
argΘ max J(Θ) is the sufficient condition for the optimal
graph classification.

Proof: Assume that exists another Θ′ and a graph G whose
correct label is l, such that π(l̂T = l|G; Θ′) > π(l̂T = l|G; Θ).
Namely, the expectation Ep(s1:T ;Θ′)[R] > Ep(s1:T ;Θ)[R]. Ac-
cording to the definition of J , J(Θ′) > J(Θ) which is against
with Θ = argΘ max J(Θ). QED

With the theorem III.1, we can solve argΘ max J(Θ) to
archive the solution of proposed problem in Sec. III-A.

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2020 at 07:57:25 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2983689, IEEE
Transactions on Knowledge and Data Engineering

6

G. Training

In this section, we will introduce the training algorithm of
our model. As mentioned above, the inspector needs to learn
a policy by tuning the parameters Θ = {θh, θa, θd, θc} in
the conjunction of the core network, the inspection network
and the action networks. Since each policy of the inspector
induces a distribution of the possible interaction sequences
s1:T , we want to maximize the total reward under this dis-
tribution: J(Θ) = Ep(s1:T ;Θ)[R], where p(s1:T ; Θ) depends
on the policy representing the occurrence probability of the
interaction sequence s1:T .

Since the interaction sequences may be very large and
difficult to exhaustive calculate, it is a non-trivial task to
maximize J . Fortunately, by considering the problem as a
POMDP, we use the technique introduced in [33], to obtain a
sample approximation of the gradient of J as shown in [18],
given by:

∇ΘJ ≈
1

MJ

MJ∑
i=1

T−1∑
t=1

∇Θ log π(dit, l̂
i
t|si1:t; Θ)γT−tJ Ri (9)

where si1:t is the interaction sequence generated by the inspec-
tor according to the current policy for i = 1, · · · ,MJ episodes,
and γJ ∈ (0, 1) is a discount factor. The equation (9) is also
known as the REINFORCE rule [34], which obtains samples
of interaction sequences s1:T by the inspector with current
policy. Then, we adjust the parameters Θ of the inspector.
It increases the log-probability of the chosen actions that
result in a correct prediction and decreases the log-probability
of low rewards corresponding actions. The policy trained in
this way allows the agent to increase the chance to shift the
inspector towards a relevant region the next time when facing
the same state. To compute ∇Θ log π(dit, l̂

i
t|si1:t; Θ), we deal

with the gradient of the network at each time step which
can be computed by back-propagation [35]. In particular, our
inspector observes the graph in the first T − 1 step, therefore,
we adjust the log-probability for t = 1, · · · , T − 1.

To reduce the variance, we add a baseline b to obtain
an optimized ∇ΘJ which is equal to the equation (9) in
expectation but has lower variance[18]:

1

M

M∑
i=1

T−1∑
t=1

∇Θ log π(dit, l̂
i
t|si1:t; Θ)(γT−tRi − bit) (10)

where bit = fb(s
i
1:t; θb) to compute the cumulative reward

depend on si1:t(h
i
t). Training the parameters according to

equation (10), allows us to increase the log-probability of
the chosen actions that result in greater cumulative reward,
and decrease the log-probability of the actions with smaller
obtained cumulative than that of baseline. The parameter θb
of fb is trained by reducing the mean squared error of Ri−bit.

IV. EXPERIMENT

This section reports the experimental results to show the
advantages of our g-Inspector. We compare the performance
of our model with other approaches. Also, we examine an ex-
ample to illustrate the effectiveness of the attention mechanism
in graph classification problem, and discuss the scalability and

interpretabe ability of our model. At last the source code of
g-Inspector is open-sourced 1.

A. Experimental setup

1) Datasets: We evaluate our model on three bioinformatics
datasets: MUTAG, NCI1, ENZYMES, and two social network
datasets: IMDB-BINARY and IMDB-MULTI. The MUTAG
dataset consists of 188 chemical compounds divided into 2
classes according to their mutagenic effect on a bacterium.
The NCI1 dataset was published by National Cancer Insti-
tute(NCI), which includes 4110 chemical compounds and is
divided into 2 classes on the activation against non-small cell
lung cancer. ENZYMES has 600 protein tertiary structures,
each of which belongs to one of the 6 classes. IMDB-BINARY
and IMDB-MULTI are movie collaboration datasets collected
from IMDB, where nodes represent actors/actresses and the
edges connect the actors/actresses who appear in the same
movie.

2) Compared methods: We compare g-Inspector against
the following representative approaches: Random Walk ker-
nel(RW) [36], Graphlet kernel (GK) [10], Deep Graph
Kernel(DGK)[9] (Code from [37]), DCNN [13] (Code from
[38]), DGCNN [26], PSCN [11], GAM and GAM-mem [31].
Note that the codes for GAM and GAM-mem are neither
released on the Internet nor accessible from the authors, we
refer to the performance results reported in [31].

3) Implementation: Our g-Inspector is implemented by
Python 2.7 and TensorFlow 1.4.1, and executed on the server
with 32GB memory, 2.4GHz Intel CPU. In all experiments,
the following setting are the same. We use DeepWalk[32]
to represent each node as a 64-dimensionality vector. In the
inspection network, we select a random node in the input graph
to initialize the start central vertex v0 and the shift instruction
d0 is initialized by a uniform distribution. Both the feature
vector a and the hidden state are with the same dimensionality
(256). In the training procedure, we set the number of samples
MJ = 20 and the discount factor γJ = 1. We train the g-
Inspector using stochastic gradient descent with a batch size
= 20, the learning rate of 10−3, and momentum of 0.9.

Beside the basic implementation of g-Inspector, we imple-
ment a multi-agent version, called g-Inspector-mem. It con-
tains multiple inspectors to explore the graph independently
and concurrently. Then it integrates their observations on the
same graph into a memory cell by averaging their hidden
states. At last, the classification network, see section III-F,
leverages the memory cell to conduct the prediction. This
extension is similar to GAM-mem[31].

B. Performance comparisons

The performance results are reported in Tab. I, in which
each column represents a dataset, the second to the forth
rows represent the statistical report, and the rest represent the
compared methods. For GAM, we compare the single agent
version (GAM) and its multi-agent version (GAM-mem). The

1https://github.com/zhilingluo/g-Inspector

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2020 at 07:57:25 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2983689, IEEE
Transactions on Knowledge and Data Engineering

7

TABLE I: Statistics of datasets and accuracy for g-Inspector compared with baselines

Datasets MUTAG NCI1 ENZYMES IMDB-BINARY IMDB-MULTI

Graph# 188 4110 600 1000 1500
Class# 2 2 6 2 3
Max.Node# 28 111 126 136 89
Avg.Node# 17 29 32 19 13

RW 83.72± 1.50 48.15± 0.50 24.26± 1.64 64.54± 1.22 34.54± 0.76
GK 81.66± 2.11 62.28± 0.29 26.61± 0.99 65.87± 0.98 43.89± 0.38
DGK 82.66± 1.45(0.028s) 62.48± 0.25(10.636s) 27.08± 0.79(0.765s) 66.96± 0.56(1.089s) 44.55± 0.52(2.430s)
DCNN 77.19± 0.00(0.004s) 56.92± 2.338(0.195s) 16.22± 1.937(0.025s) 51.20± 1.6(0.049s) 35.33± 1.485(0.041s)
DGCNN 85.83± 1.66 74.44± 0.47 — 70.03± 0.86 47.83± 0.85
PSCN 88.95± 4.37 76.34± 1.68 — 71.00± 2.29 45.23± 2.84
GAM — 64.17± 0.05 — — —
GAM-mem — 67.71± 0.04 — — —
g-Inspector 87.05± 4.81(0.026s) 65.63± 1.95(0.076s) 37.13± 4.78(0.051s) 64.47± 2.42(0.077s) 46.72± 2.36(0.069s)
g-Inspector-mem 90.19± 2.34(0.032s) 67.79± 1.24(0.112s) 38.75± 2.45(0.068s) 65.71± 1.57(0.092s) 47.92± 1.33(0.086s)

experiments are repeated 10 times in the same setting over 10-
fold cross-validation. All results are presented as the average
classification accuracy ± standard deviation.

We make three-fold interesting observations. First, the g-
Inspector outperforms the other methods on MUTAG, EN-
ZYMES, and IMDB-MULTI, with accuracy gain on average
by 16.30% and up to 22.53%. Concretely, using g-Inspector,
the accuracy gain for MUTAG is 13.00%, for ENZYMES
is 22.53% and for IMDB-MULTI is 13.38%. For the two
left datasets NCI1 and IMDB-BINARY, g-Inspector is also
competitive.

Second, the execution time of g-Inspector is short than DGK
on all the datasets, and also shorter than DCNN on NCI1.
This is mainly because the forward procedure of g-Inspector
is efficient. For example, DGK takes 1.089 seconds, 14 times
of 0.077 of g-Inspector, and 12 times of 0.092 of g-Inspector-
mem.

Third, the g-Inspector is more effective and efficient than
GAM. For model design, g-Inspector moves to a farther
vertex by the shift operation, compared with GAM moving
to a one-hop neighborhood vertex at one step. From the
experiment results, (1) multi-agent version (both GAM-mem
and g-Inspector-mem) achieves higher classification accuracy
than the basic version; (2) our g-Inspector gets 65.63% which
is better than 64.17% of GAM; and (3) g-Inspector-mem gets
67.79% which is better than 67.71% of GAM-mem.

C. Result illustration of attention mechanism

In order to better understand the nature of the attention
mechanism, we inspect an compound C14H23NO2 from MU-
TAG from MUTAG. Figure 4 (a) illustrates the structure of
this compound and the shift process of the inspector . In
C14H23NO2 from MUTAG, the nitro structure consisting of
vertex 14, 15 and 16, determines the class of this compound.
In this case, the inspector shifts from the initial carbon atom
at the vertex 3, and takes 6 shift operations over time. Figure 4
(b) demonstrates the classification accuracy at each time step.
For example, at the first time step, the vertex 3 and its
neighborhoods, see Fig. 4 (b-i), are observed, and the current
classification accuracy is only 59.9%. When the inspector
shifts to the vertex 7, it can observe the one-hop neighborhood,

Fig. 4: (a) The inspector shift process on C14H23NO2 from
MUTAG. (b) The classification accuracy varies over the shift
of inspector.

see (b-ii), which contains the nitrogen atom vertex 14, and the
classification accuracy can reach 86.39%. When the inspector
shifts to the oxygen atom vertex 15, it achieves the best
classification accuracy of 91.19%, because both an oxygen
vertex 15 and the nitrogen vertex 14 can be observed, see (b-
iii). When the inspector shifts from the vertex 15 to the vertex
8, see (b-iv), the accuracy is reduced to 83.59%, in practice,
we used an early-stop to stop the inspector’s shift and output
the optimal classification result at (b-iii).

D. Interpretable Ability of g-Inspector

Compared with other graph classification methods, our pro-
posed model can make the results interpretable. Specifically,
our g-Inspector can help to measure the contribution of each
subgraph region to find out the key subgraph regions for
classification. Our g-Inspector can assign each observed region
a contribution score by normalizing the gain of the corre-

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2020 at 07:57:25 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2983689, IEEE
Transactions on Knowledge and Data Engineering

8

Fig. 5: The performance with different size of training set on four datasets.

Fig. 6: The performance with different hidden layers number T on four datasets.

Fig. 7: The performance with different inspector shift instruction length m on four datasets.

Fig. 8: The performance with different graph number on four datasets.

Fig. 9: The performance with different vertex number on four datasets.

sponding classification accuracy. For example, the scores of
the four regions shown in Fig. 4(b) are 0.19, 0.27, 0.28, 0.26.
It concludes that the third region (b-iii) is more significant.
We can discover the significant regions for a classification task
by intersections of the high-score regions from each graph in
a set, e.g. the nitro structure in MUTAG, which making the
results interpretable.

E. Performance on different amounts of training data

It is essential to investigate the performance with different
size of training data and test data. We design this experiment
by dividing the datasets into sub-datasets with different pro-
portion of training set, varying from 90% to 50%, on NCI1,
ENZYMES, IMDB-BINARY and IMDB-MULTI. The results
are reported in Fig. 5, where the x-axis represents the training

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2020 at 07:57:25 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2983689, IEEE
Transactions on Knowledge and Data Engineering

9

TABLE II: Statistics of datasets and accuracy for g-Inspector compared with baselines

Datasets MUTAG NCI1 ENZYMES IMDB-BINARY IMDB-MULTI

g-Inspector 87.05± 4.81(0.026s) 65.63± 1.95(0.076s) 37.13± 4.78(0.051s) 64.47± 2.42(0.077s) 46.72± 2.36(0.069s)
g-Inspector
(node2vec) 86.50± 2.49(0.027s) 64.78± 2.59(0.076s) 36.73± 2.37(0.053s) 62.33± 2.51(0.078s) 44.32± 0.89(0.065s)

g-Inspector
(no-shift) 81.00± 3.53(0.007s) 58.75± 1.48(0.030s) 23.13± 4.20(0.015s) 58.73± 1.74(0.019s) 40.00± 1.43(0.018s)

g-Inspector
(atomic-shift) 83.00± 3.35(0.015s) 60.00± 0.94(0.054s) 29.38± 3.96(0.033s) 61.33± 1.47(0.039s) 42.95± 1.17(0.036s)

g-Inspector
(0-order) 85.50± 2.85(0.026s) 64.40± 2.07(0.067s) 34.40± 3.58(0.054s) 63.80± 1.14(0.071s) 44.40± 1.51(0.058s)

size proportion and the left and right sides of the y-axis
represent the test time and accuracy respectively. It supports
that (1) the test time keep steady because it is independent
with training set size; and (2) the accuracy increases a little
with the growth of training set proportion. When the training
set is extremely small, e.g. 50% for IMDB-BINARY, the
classification accuracy is still competitive (66%, close to most
baselines).

F. Step number tuning

This experiment examined the effectiveness and efficiency
of the model with different # hidden layer, denoted by T ,
which represents the maximum step number of shift operation.
In this experiment, we set m = 3, vary the parameter T
from 1 to 11, on NCI1, ENZYMES, IMDB-BINARY and
IMDB-MULTI, and report the results in Fig. 6. The x-axis
represents parameter T and the left and right sides of the y-
axis are the test time and accuracy, respectively. We make
two observations: (1) For most datasets, the execution time
grows as T increases. The larger T means more recurrent
layers in the core net, resulting in larger time complexity in
computation for forward procedure of the g-Inspector. (2) The
optimal setting of T varies from dataset to dataset. For IMDB-
BINARY, the classification accuracy grows when T ≤ 8 but
decreases when T > 8. For other datasets, the classification
accuracy grows when T ≤ 7 and decreases when T > 7. A
very large T increases the difficulty of pre-stop and causes
overfitting on the training set.

G. Shift instruction length tuning

We conducted another experiment to report the performance
with varying the instruction length m from 1, 11, on NCI1,
ENZYMES, IMDB-BINARY and IMDB-MULTI. Figure 7
illustrates the results on both accuracy and test time. We
make the following interesting observations: (1) The test time
increases greatly when the length varies from 1 to 7, as shown
by the height of the bar(s) in Fig. 7. It is because the longer
instruction vector requires more computation in both action
network and inception network. (2) With the growth of m, the
accuracy increases at first, achieves the optimal value and then
keeps steady or even decreases. For example, for ENZYMES,
the accuracy is 37% at m = 3 and decreases to 32% at
m ≥ 6. Because the longer instruction, meaning more atomic
shift operations at a time step, represents higher efficiency
and provides greater chance to scan more regions in graph.

It eventually obtains features observed by the inspector and
promotes the classification accuracy. When m is too large, the
effectiveness will be canceled due to the over-fitting.

H. Scalability on graph number

To evaluate the scalability of g-Inspector, we conducted
an experiment varying the graph number in datasets and
reported the performance. In this experiment, we control the
graph number by randomly removing and duplicating graph
objectives in test set. The experiment results on accuracy and
test time are reported in Fig. 8. There are two observations:
(1) The test time grows linearly with respect to the growing
of graph number. For example, in NCI1, the test time is
around 0.25 seconds when graph number is 1000. And the
test time reaches 1.7 seconds when graph number is 8000.
(2) The accuracy keeps steady with different graph number.
For example, in IMDB-BINARY, the accuracy is about 65%
when graph number is either 300 or 2400. The experiment
results show that g-Inspector works well for a mass of graph
objectives.

I. Scalability on vertex number

The last experiment is about the scalability of g-Inspector
on vertex number of graph. The key advantage of g-Inspector
is that it just loads a small region of the graph object instead of
loading the entire graph via the inspection network. It means
that it has the good time complexity for big graph object.
To evaluate this scalability, we conduct this experiment by
evaluate g-Inspector on graph objects having different vertex
number. We generate the big graph objects by duplicating
the nodes and connecting edges from original graph. The
experiment results are illustrated by Fig. 9, from which we
can make the observation: Both test time and accuracy remain
unchanged with the growth of #vertices. For example, in NCI1,
the accuracy is always 68% and the test time is 0.013 seconds
when #vertices = 100, or 800.

J. Ablations

We perform ablation experiments to validate several key
parts of g-Inspector. First, we design an experiment to
investigate the impact of embedding algorithm by em-
ploying node2vec as ψ, which can preserve higher-order
proximity between nodes to a low-dimensional space the
same as Deepwalk[39]. We compare the normal version

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2020 at 07:57:25 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2983689, IEEE
Transactions on Knowledge and Data Engineering

10

(g-Inspector) using DeepWalk as the encoder and a vari-
ant version g-Inspector(node2vec), shown in Tab.2. The
g-Inspector(node2vec) denotes the model using node2vec
as the encoder. When comparing g-Inspector and g-
Inspector(node2vec) in Tab.2, we can see that the accuracy
decreased on average by 1.27% up to 2.40% on all datasets.
Even the accuracy on different version is slightly different,
our g-Inspector is always competitive with baseline. The
accuracy promotion or demotion caused by replacing different
embedding algorithm is not our major technical contribution.

Second, we design an experiment to investigate the effec-
tiveness of the shift operation. More specifically, we compare
the normal version (g-Inspector), and the other two variant
versions, shown in Tab. 2. The g-Inspector(no-shift) denotes
the model in which the inspector cannot be shifted. The g-
Inspector(atomic-shift) denotes the model where only atomic
shift operation is permitted and serial shift operation is for-
bidden. When comparing g-Inspector and g-Inspector(no-shift)
in Tab. 2, we can see that enabling the inspector shift makes
the accuracy higher on average by 7.88% up to 14% on all
datasets. The shift operation makes the inspector observe more
than one region of graph to retrieve valuable information for
classification. Compared to atomic shit, serial shift operation
provides accuracy improvement on average by 4.87% and up
to 7.75%. The serial shift operation speeds up the shift process,
and observes more regions subject to the constraint steps.

Third, we design an experiment to investigate the impact of
the size of observing regions by inspector, which was defined
in the k-order region. We compare the normal version (g-
Inspector) where k = 1 and a variant version g-Inspector(0-
order) where k = 0, shown in Tab.2. The g-Inspector(0-order)
denotes the model in which the inspector only observes a
single node at once time. When comparing g-Inspector and
g-Inspector(0-order) in Tab.2, we can see that enabling the
inspector to observe a wider range makes the accuracy higher
on average by 1.70% up to 2.73% on all datasets. When the
scope of observation is wider, the inspector can collect more
information to makes better decisions.

V. CONCLUSION

To address the challenges of graph classification, we
proposed a recurrent attention model on graphs, called g-
Inspector. We introduced an inspector module applying the
attention to investigate the significance of each region to classi-
fication. It is interpretable owing to the ability of measuring the
contribution of each region to the classification. Besides, we
introduced a shift operation across the graph selecting a series
of task relevant regions instead of searching the entire graph,
avoiding the high dimensionality problem. Our experimental
results showed that our g-Inspector model is competitive and
achieves a higher accuracy compared with existing methods.

VI. ACKNOWLEDGMENTS

We would like to thank all reviewers and editors for the
constructive suggestions. Dr. Sha Zhao and Dr. Jianwei Yin
are the corresponding authors. This work was supported by
National Natural Science Foundation of China (No. 61802340,
No. 61802342).

REFERENCES

[1] H. Cai, V. W. Zheng, and K. Chang, “A comprehensive survey of graph
embedding: problems, techniques and applications,” IEEE Transactions
on Knowledge and Data Engineering, 2018.

[2] R. A. Rossi, R. Zhou, and N. Ahmed, “Deep inductive graph representa-
tion learning,” IEEE Transactions on Knowledge and Data Engineering,
2018.

[3] S. Pan, J. Wu, and X. Zhu, “Cogboost: Boosting for fast cost-sensitive
graph classification,” IEEE Transactions on Knowledge and Data Engi-
neering, no. 1, pp. 1–1, 2015.

[4] X. Kong and P. S. Yu, “Semi-supervised feature selection for graph
classification,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2010, pp. 793–
802.

[5] ——, “Multi-label feature selection for graph classification,” in Proceed-
ings of the 10th IEEE ICDM International Conference on Data Mining,
2010, pp. 274–283.

[6] S. Pan and X. Zhu, “Graph classification with imbalanced class dis-
tributions and noise,” in Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, 2013, pp. 1586–1592.

[7] L. Dehaspe, H. Toivonen, and R. D. King, “Finding frequent substruc-
tures in chemical compounds,” in Proceedings of the 4th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
1998, pp. 30–36.

[8] H. Wang, P. Zhang, X. Zhu, I. W.-H. Tsang, L. Chen, C. Zhang, and
X. Wu, “Incremental subgraph feature selection for graph classification,”
IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 1,
pp. 128–142, 2017.

[9] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2015, pp. 1365–1374.

[10] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borg-
wardt, “Efficient graphlet kernels for large graph comparison,” in Arti-
ficial Intelligence and Statistics, 2009, pp. 488–495.

[11] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proceedings of the 33rd International
Conference on Machine Learning, 2016, pp. 2014–2023.

[12] Z. Luo, L. Liu, J. Yin, Y. Li, and Z. Wu, “Deep learning of graphs with
ngram convolutional neural networks,” IEEE Transactions on Knowledge
and Data Engineering, vol. 29, no. 10, pp. 2125–2139, 2017.

[13] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Advances in Neural Information Processing Systems, 2016, pp. 1993–
2001.

[14] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 793–803.

[15] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional
networks,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 1416–
1424.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[17] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 13th
Conference on Empirical Methods in Natural Language Processing,
2015, pp. 1412–1421.

[18] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual
attention,” in Advances in Neural Information Processing Systems, 2014,
pp. 2204–2212.

[19] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in Proceedings of the 32nd International Confer-
ence on Machine Learning, 2015, pp. 2048–2057.

[20] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Advances in Neural
Information Processing Systems, 2015, pp. 577–585.

[21] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition with
visual attention,” arXiv preprint arXiv:1412.7755, 2014.

[22] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,” in
Proceedings of the 2nd IEEE ICDM International Conference on Data
Mining, 2002, pp. 721–724.

[23] K. M. Borgwardt and H. P. Kriegel, “Shortest-path kernels on graphs,”
in Proceedings of the 5th IEEE ICDM International Conference on Data
Mining, 2006, pp. 74–81.

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2020 at 07:57:25 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2983689, IEEE
Transactions on Knowledge and Data Engineering

11

[24] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis, “Matching node
embeddings for graph similarity,” in Proceedings of the 31st AAAI
Conference on Artificial Intelligence, 2017, pp. 2429–2435.

[25] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of Ma-
chine Learning Research, vol. 12, no. Sep, pp. 2539–2561, 2011.

[26] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proceedings of the 32nd
AAAI Conference on Artificial Intelligence, 2018, pp. 4438–4445.

[27] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in Advances in Neural Information Processing Systems, 2018, pp. 4800–
4810.

[28] E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun, “Gram:
graph-based attention model for healthcare representation learning,” in
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017, pp. 787–795.

[29] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[30] J. B. Lee, R. A. Rossi, X. Kong, S. Kim, E. Koh, and A. Rao, “Higher-
order graph convolutional networks,” arXiv preprint arXiv:1809.07697,
2018.

[31] J. B. Lee, R. Rossi, and X. Kong, “Graph classification using structural
attention,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2018, pp. 1666–
1674.

[32] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2014, pp. 701–710.

[33] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no.
3-4, pp. 229–256, 1992.

[34] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[35] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber, “Solving
deep memory pomdps with recurrent policy gradients,” in International
Conference on Artificial Neural Networks. Springer, 2007, pp. 697–706.

[36] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results
and efficient alternatives,” in Learning Theory and Kernel Machines.
Springer, 2003, pp. 129–143.

[37] P. Yanardag and S. Vishwanathan, “Deep graph kernels code,” http://
www.mit.edu/∼pinary/kdd/, 2017.

[38] J. Atwood, “Dcnn code,” https://github.com/jcatw/dcnn, 2017.
[39] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for

networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 855–
864.

Zhiling Luo is an Assistant Research Professor in
Computer Science at Zhejiang University, China. He
received his B.S. and Ph.D. degree in Computer
Science from Zhejiang University in 2012 and 2017,
respectively. He was the visiting scholar of Georgia
Institute of Technology, US, in 2016. His research
interests include service computing, machine learn-
ing and data mining.

Yinghua cui is a postgraduate student at College
of Computer Science, Zhejiang University. Her re-
search interests include deep learning and data min-
ing.

Sha Zhao is currently a Postdoctoral Research
Fellow of the College of Computer Science and
Technology, Zhejiang University. She received the
Ph.D. degree from Zhejiang University, Hangzhou,
China, in 2017. She visited the Human-Computer
Interaction Institute at Carnegie Mellon University
as a visiting PhD student from 2015 to 2016. She re-
ceived the Best Paper Award of ACM UbiComp’16.
Her research interests include pervasive computing,
data mining, and machine learning.

Jianwei Yin is currently a professor in the College
of Computer Science, Zhejiang University, China.
He received his Ph.D. in Computer Science from
Zhejiang University in 2001. He is the visiting
scholar of Georgia Institute of Technology, US, in
2008. His research interests include service comput-
ing, cloud computing and information integration.
Currently Prof. Yin is the AE of IEEE Transactions
on Service Computing.

Authorized licensed use limited to: Zhejiang University. Downloaded on April 07,2020 at 07:57:25 UTC from IEEE Xplore. Restrictions apply.

