
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 1

Player Behavior Modeling for Enhancing
Role-Playing Game Engagement

Sha Zhao , Member, IEEE, Yizhi Xu, Zhiling Luo , Jianrong Tao , Member, IEEE,

Shijian Li, Changjie Fan, and Gang Pan , Member, IEEE

Abstract— Role-playing games (RPGs) are one of the most
exciting and most rapidly expanding genres of online games.
Virtual characters that are not controlled by players, have
become an integral part, which helps to advance narratives of
RPGs. Believable characters can enhance game engagement and
further improve player retention. However, game players easily
find that most characters’ behaviors are limited and improbable,
resulting in a less meaningful game experience. In this work,
we propose a framework to model game behaviors to learn behav-
ior patterns of human players. Based on the learned behavior
patterns, it generates human-like action sequences that can be
used for the design of believable virtual characters in RPGs,
so as to enhance game engagement. Specifically, considering the
influence of game context in behavior patterns, we integrate game
context (players’ levels and game classes) with actions together to
model behaviors. We propose a long-term memory cell on actions
and game context to learn the hidden representations. We also
introduce an attention mechanism to measure the contribution of
the actions previously performed to the next action. Given only
one action, our model can generate action sequences by predicting
the succeeding action based on the previously generated actions.
The model was evaluated on a real-world data set of over
22 000 players and more than 51 million action logs of an RPG
game in 21 days. The results demonstrate the state-of-the-art
performance.

Index Terms— Behavioral sequence generation, player
behavior modeling, role-playing games (RPGs).

I. INTRODUCTION

ROLE-PLAYING games (RPGs) are one of the most
exciting and most rapidly expanding genres of online

games [1]–[3], where players assume the roles of characters
in a fictional setting and take responsibility for acting out these
roles within a narrative, such as World of Warcraft. In RPGs,
characters not controlled by players have become an integral
part [4], which can help and guide to accomplish the goals of
the game being independent of the player. For example, some
characters are designed to play major or minor roles in game

Manuscript received May 21, 2020; revised November 29, 2020; accepted
January 13, 2021. This work was supported by the Natural Science Foundation
of China under Grant 61802342, Grant 61802340, Grant 61772460, and Grant
61925603. (Corresponding author: Gang Pan.)

Sha Zhao, Yizhi Xu, Zhiling Luo, Shijian Li, and Gang Pan are with the
Department of Computer Science, Zhejiang University, Hangzhou 310027,
China (e-mail: szhao@zju.edu.cn; yzxu@zju.edu.cn; luozhiling@zju.edu.cn;
shijianli@zju.edu.cn; gpan@zju.edu.cn).

Jianrong Tao and Changjie Fan are with the Fuxi AI Lab, NetEase
Inc., Hangzhou 310052, China (e-mail: hztaojianrong@corp.netease.com;
fanchangjie@corp.netease.com).

Digital Object Identifier 10.1109/TCSS.2021.3052261

plots, and the player’s interaction with them is typically part
of advancing the narrative. Some others have no relationship
to the plot, but their presence is meant to make the story world
scenery richer and more believable. Such characters in games
are important for enhancing the game experience, especially
for the newly released games.

A majority of characters may look like the player; however,
their behaviors clearly mark them as artificial and limited,
remaining bland, robotic, and lifeless. Most of them offer
limited interaction having to do with their specific purposes,
which could break players’ feeling of immersion. Besides,
some characters that are not part of any plot or quest are barely
distinguishable from the background scenery. It does not take
long for game players to sense that the characters’ behaviors
are improbable. The lack of believability in the characters’
design could result in a less meaningful game experience.
Perceived believability is expected to increase players’ feel-
ing of immersion and their enjoyment [5]. Designing more
human-like and more believable characters is likely to result
in better role-playing experiences and further improving player
retention. However, designing believable actions for hundreds
of characters is cost-prohibitive for the industry.

As with the rapid development of machine learning
techniques [6], we believe that significant automation and
asset-reuse in this area are possible and hope to contribute to
the design of actions and processes that allow more human-like
and more believable characters. The ability to automatically
designing human-like and believable characters for RPGs has
a number of benefits. First, it can lessen the authorial burden
of game designers, allowing renderings of a large number of
characters, each with their own role and action patterns, all
acting like human players. Second, game engagement can be
enhanced as human-like, believable characters help maintain a
sense of presence in the virtual world, and players’ immersion
is improved, especially for newly released games so that the
player churn can further be avoided.

In order to design characters that act like human players,
it is essential to learn behavior patterns from human players
in RPGs. Behavior patterns are affected by many factors.
First, the context (such as player levels and game classes)
has an influence on the actions performed by players. For
example, players in different levels tend to take different
actions. Second, players take actions in order, and there exists
a sequential relationship among actions, where the current
action may be affected by the actions performed in the past

2329-924X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on February 03,2021 at 03:32:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4628-5198
https://orcid.org/0000-0002-0540-7307
https://orcid.org/0000-0003-1807-9522
https://orcid.org/0000-0002-4049-6181

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

and may influence the decision of what action to perform next.
Third, some actions are closely related with each other, such
as the pairwise actions and the actions frequently happening
together. Recognizing such relationship benefits to infer the
next most likely action.

In this article, we propose a novel framework to model
player behaviors by integrating together the abovementioned
factors, to learn behavior patterns of human players. On the
basis of the learned behavior pattern, we generate human-like
action sequences that can be used to design characters to
enhance game engagement. Given only one action, our model
generates an action sequence by predicting the succeeding
action based on the previously generated actions. Our model
is evaluated on a large scale data set of about 51 million
action logs of QianNvYouHun, a computer RPG developed
by NetEase Inc., collected from over 22 000 players during
a time period of 21 days. The results show its effectiveness
and stability. We investigate the generation performance for
different game levels and find that the generation performance
of the higher levels is better than that of the lower levels,
suggesting that the context of the level has an influence
on behavior patterns. It is also found that the difference in
generation performance is slight when different actions are
given, indicating the stability and robustness of our model.
The contributions of our article are threefold.

1) We propose a novel framework for modeling player
behaviors to learn behavior patterns, and on the basis
of the behavior patterns learned from human players,
it generates human-like action sequences given only one
action. It is validated by a large-scale real-world data set
and achieves state-of-the-art performance.

2) Our model includes actions and context (player lev-
els and game classes) encoding, a long-term action
memory (LTAM) working on the actions and context
to learn hidden representations, and an action-attention
mechanism to measure the contribution of the actions
previously performed to the next action.

3) In addition to human-like action sequence generation,
our model can be applied in many other applications,
such as predicting the next action most likely to be
performed by human players. Action prediction in games
can support uploading game sources in advance, improv-
ing the game experience.

II. RELATED WORK

In recent years, a growing number of studies have sought
to model the behaviors of players in games. In the past,
researchers have built behavior models of players in games
using survey data or personal interviews, such as [7] and [8];
however, these techniques are time-consuming and result in
models with limited generalizability [9]. As more research was
done in this area, researchers began to incorporate data-driven
techniques into their survey methodologies [10]–[16].

For example, Synnaeve and Bessiere [10] applied a
Bayesian method to model a particular task that consists of
choosing what to do and to select which target in a situation
where allies and foes are present. The method learned the con-
ditional probabilities from data gathered during human-player

sessions in a massively multiplayer online role-playing game
(MMORPG). Sharma et al. [11], [17] created a hybrid method-
ology by combining game traces along with player survey
data in order to model player behaviors. They monitored
players’ progress through the game and matched the progress
with a game trace from an accumulated library of traces.
Mahlmann et al. [18] investigated whether one can predict
specific aspects of player behaviors, examining the commer-
cial game Tomb Raider: Underworld by supervised learning
method. They forecast the moment at which a player will cease
playing or how long the player would take to finish a game.
Suznjevic et al. [19] performed action specific measurements
of player sessions in terms of defined action categories for
MMORPGs. They explored the hourly trends in user behavior
and formed models based on observed patterns.

Gómez et al. [12] used variable-order Markov (VOM) to
build a probabilistic model that is able to use the historic
behavior of game players and to infer what will be their next
actions. Liu et al. [14] worked out a method to predict player
behaviors and movements in an educational game. The algo-
rithm selects from a combination of methods-Markov models,
state aggregation, and player heuristic search, according to
whichever offers the largest amount of data. Lee et al. [15],
likewise, developed a framework for predicting player move-
ments within a pair of puzzle games by proposing a mixture of
a one-depth heuristic search model and a data-driven Markov
model. Valls-Vargas et al. [20] predicted a dynamic state of
play, capturing fluctuations in player behaviors through the
use of episodic information and time interval models within
a sequential machine learning method capable of learning
several models progressively.

There have been some studies that focus on analyzing
sequential observed actions and modeling behaviors. For
example, Wallner [16] proposed the use of lag sequential
analysis that makes use of statistical methods to determine the
significance of sequential transitions, so as to aid analysis of
behavioral streams of players. Meaningful sequences involved
in both frequent and rare patterns were extracted from the
input data. Makarovych et al. [21] analyzed the sequential
behavioral data and built profiles of players. They mined
frequent sequences and then clustered the sequences to build
behavioral profiles from the sequence data. Harrison and
Roberts [9] used sequential observations to model and predict
player behaviors. They first mined the actions of common
co-occurrences and then monitored a player’s action progress
and determined the probability that the related actions will
complete together.

There have been some studies modeling player behaviors
using reinforcement learning [22], [23]. The studies, however,
primarily focused on winning the game, such as achieving high
scores or beating the opponents. The behavior patterns learned
mostly ignored the rich and complex human motivations.
Sometimes, human player actions are not directly related to
the game’s main objective, and players just want to have
fun or enjoyment [24]. In addition, there have been some
studies for goal recognition and plan recognition [25], [26].
Goal recognition seeks to discern one player’s intentions by
studying his or her actions [27] and plan recognition tackles

Authorized licensed use limited to: Zhejiang University. Downloaded on February 03,2021 at 03:32:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: PLAYER BEHAVIOR MODELING FOR ENHANCING ROLE-PLAYING GAME ENGAGEMENT 3

the more difficult challenge of predicting both a player’s goal
and the precise sequence of actions by which he or she
will pursue it [28]. Goal/plan recognition is a closely related
problem in which sequences of actions are used as input to
predict the most likely goal/plan those actions that are trying
to achieve. The main difference between our problem and
plan/goal recognition is that we are predicting a sequence of
actions directly rather than predicting goals and using those
goals to predict actions.

III. PROBLEM DESCRIPTION

Players usually play in populated environments with simple
characters that are not controlled by players [29]. These
characters have fixed and limited behaviors. They cannot learn
from what experience in the game like a human player. It is
easy for players to find them robotic and improbable, leading
to player engagement decrease and even player churn. In order
to promote game engagement, especially in the scenarios
where characters are required, we model player’s historical
actions to learn behavior patterns and then, on the basis of the
learned behavior patterns, generate a sequence of actions when
an action is given. The behavior patterns of human players are
preserved in the generated action sequences, where each action
is selected based on the previously generated actions. Thus,
the generated action sequences can be applied in designing
characters, to make them more human-like and believable,
promoting game engagement and supporting replayability.

Consider a role-playing game with the action set A =
{ai}|A|

i defined, a player u performs a set of his/her playing
sequences Su = {si }|S|

i , where each si is the sequence of
actions (a1, a2, . . . , ak). Our goal is to generate human-like
behaviors, i.e., action sequences, which can be used for
designing game characters that are not controlled by players
to enhance game engagement. This problem is formalized as
follows.

Definition 1 (Behavior Generation): Given an action a∗ ∈
A of a player u, generate his/her following behavior, i.e., an
action sequence ŝ = (â1, â2, . . .), where âi ∈ A.

This generated sequence ŝ is considered as human-like if
each action âi follows the same behavior pattern of player u.
It can be evaluated by computing the correspondence between
the generated action sequences and the ground-truth action
sequences of human players. For example, consider the player
u having a sequence (a1, a2, a3), and we can generate (â2, â3)
by taking a1 as a∗. The closer (â2, â3) is to (a2, a3), the better
it is.

In order to generate human-like action sequences, it is
essential to learn the behavior patterns of game players. There
are some factors that have an influence on human player
behaviors. First, the context of the current action performed
by one player influences the decision of the follow-up actions.
As players with different context progress a game, they are
likely to make different types of actions. For example, players
with different levels or game classes perform different actions.
The varying of the context affects different behavior patterns
of players in games. Second, the actions are performed in order
by human players and form a sequence. By this nature, player’s

current actions may be affected by the actions performed in the
past and may influence their upcoming actions. Thus, learning
sequential relationship is necessary, where the decision of what
action to perform next is influenced by the actions performed
in the past. Third, some actions are close to each other, such
as the pairwise actions, actions that co-occur frequently, and
the ones with a causal relationship. Recognizing such a close
relationship among actions benefits to discover which previous
action is important to the next action so that it can be helpful
to select the most likely action during the generation stage.

IV. METHODS

In order to generate human-like action sequences, we pro-
pose a novel model that investigates together the factors men-
tioned above. First, we encode actions and their corresponding
contexts, such as players’ levels and game classes. Actions
are encoded in dense representations, and the context is taken
into consideration as well. The dense representations serve as
input to an LTAM that is introduced to compute the hidden
representation of actions and context. The LTAM cell features
a sequence of memory blocks that include one memory cell,
which outputs the hidden representation of actions and context.
We then introduce an attention mechanism on the hidden
representations. It adaptively weights the actions and learns
the patterns from the input sequences. Based on the learned
behavior patterns, given one action, our model predicts the
succeeding action given actions previously generated and
repeats one by one to generate a sequence of actions. Fig. 1
illustrates our model for action sequence generation.

A. Action and Context Encoding

The actions performed in the past by one player have an
influence on the decision of what action to perform next.
Besides the actions, the context when one player takes the
action could influence the decision. Intuitively, one player
takes actions depending on his/her context, such as the player’s
levels and game classes. Class is a job or profession commonly
used to differentiate the abilities of different game characters,
such as Assassin and Wizard. In an RPG, one player takes each
action with a specific level and game class. Different levels
usually lead to different actions due to different quests, even
for the same player. Similarly, players with different game
classes have different behavior patterns since available skills
are different among classes. Thus, we take historical actions
into consideration and the corresponding context as well. Here,
we explore one player’s level and game class, which are taken
as the context.

Inspired by advances in distributed vector representations
of text (e.g., words) [30], we encode each action in the
sequence with a distributed representation. The corresponding
level and game class of the same player are also encoded using
distributed representations. To integrate the action, level, and
game class together to learn behavior patterns, we concatenate
the three embedded vectors. Formally, the input vector va is
obtained by

va = [vaction, vlevel, vclass] (1)

Authorized licensed use limited to: Zhejiang University. Downloaded on February 03,2021 at 03:32:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Fig. 1. Illustration of our model.

where [] represents the concatenation operation on vectors,
and vaction, vlevel, and vclass represent the distributed vectors of
action a, level l, and game class c, respectively.

B. Long-Term Action Memory

Considering the sequential relationship among actions, it is
important to learn behavior patterns from action sequences,
in which the next action may be affected by the actions per-
formed in the past. Extracting behavior patterns from sequence
of player actions is likely to provide strong evidence to
generate an action sequence. The model for learning sequential
behavior patterns should robustly handle close relationships
among the actions in a sequence, especially in a relatively
long sequence. As a widely used recurrent neural network for
solving time sequence problems, LSTM [31] leverages the cell
state to keep the long-term memory in a sequence. Inspired by
LSTM, we propose a component called LTAM. It preserves
long-term lag capabilities to model players’ behaviors and
learns sequential behavior patterns. The LTAM features a
sequence of memory blocks that include one memory cell to
model the sequential relationship among historical actions in
the sequence.

For the t th action at , the vector of at and the corresponding
level lt and game class ct are concatenated as vat , serving
as input to LTAM. The memory cell includes three gating
units: an input gate, a forget gate, and an output gate. In the
implementation, the input gate qt , forget gate ft , and candidate
memory cell c̃t for the tth action are computed in the following
equation:

qt = σ(W t · vat + U t · ht−1 + bi)

ft = σ(W f · vat + U f · ht−1 + b f)

c̃t = tanh(W c · vat + U c · ht−1 + bc) (2)

where W and U are weight matrices for vat and the cell output,
i.e., hidden representation (ht−1) for the (t − 1)th input, · is
dot product, b is the bias vector of each unit, and σ and tanh
are the logistic sigmoid and hyperbolic tangent function.

A new state ct is updated by modulating the current memory
candidate value c̃t via the input gate qt and the previous

memory cell state (ct−1) via the forget gate (ft), as shown
in (3). Through this process, a memory block decides whether
to keep or forget the previous memory cell state via the forget
gate and regulates the candidate of the current memory cell
state via the input state

ct = qt � c̃t + ft � ct−1 (3)

where � is the cross product.
The output gate (ot), similarly calculated as in (2), is utilized

to compute the hidden representation (ht) of the memory block
for the t th input, based on the updated cell state (ct) as follows:

ot = σ(Wo · vat + Uo · ht−1 + bo)

ht = ot � tanh(ct). (4)

So far, we obtain ht computed by the LTAM. ht is the
hidden representation of the t th action and the corresponding
level and game class.

C. Attention on Hidden Representations

In a historical sequence, some actions are closely related to
each other. For example, the entering and leaving the dungeon
instance are pairwise related to each other, and the relationship
between killing creatures and, thus, collecting the items from
the killed creatures is a causal link. Recognizing such a
relationship helps to discover which action is important for the
next action so that we select the next most likely action when
generating an action sequence. Here, we introduce an attention
mechanism on hidden representations of actions to measure
the contribution of each action to the next action and discover
the relatively important action. The attention network [32]
learns to assign attention scores to each word in the sentence,
which, in other words, follows the diversity structure of data.
In our work, the attention mechanism computes the weight of
each action in the sequence for the next action, which makes
each action have a different contribution. One action with a
higher weight should be paid more attention to the next action.
By introducing the attention mechanism, we can recognize
which action is more important for the next action and further

Authorized licensed use limited to: Zhejiang University. Downloaded on February 03,2021 at 03:32:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: PLAYER BEHAVIOR MODELING FOR ENHANCING ROLE-PLAYING GAME ENGAGEMENT 5

infer players’ intention from action sequences. Thus, attention
is helpful for interpreting the generated sequence.

Formally speaking, the hidden representations
(h1, h2, . . . , ht) are integrated by a fully connected layer.
It involves an affine parameter Wa and a bias parameter
ba and gets the attention weight χ . With the help of χ ,
the weighted sum of all the hidden state hi at each step is
used to compute the attention-based hidden state hATT

t in the
softmax layer. Each weight χi is computed by

χi = tanh(Wa[hi , ht] + ba). (5)

With the attention mechanism, the attention-based hidden
representation hATT

t is computed by (6), which is the weighted
summation of h. Here, the superscript ATT is used to distin-
guish from the naive hidden representation h

hATT
t =

t∑
i=0

χi hi . (6)

D. Generating Action Sequences

Once the attention-based hidden representation (hATT
t) is

calculated for the tth action, it is used to predict the next
most likely action at based on the previous t actions in a
softmax layer, which is interpreted as a calculation of posterior
probabilities of actions. The softmax function outputs the
probability distribution over all candidate actions. The action
that has the highest probability is considered as the one most
likely to be performed next by one player. Given an action
a∗, generate a sequence ŝ. With softmax, at generation phase,
we have

Pr(ât |ât−1, . . . , â1, a0 =a∗) = eyât∑
i eyi

Pr(ŝ|a0 =a∗) =
∏
t=1

Pr(ât |ât−1, . . . , â1, a0 =a∗).

(7)

Each of yi is unnormalized probability for each predicted
ât , computed as

y = Z T hATT
t (8)

where Z is the parameter of softmax and hATT
t is the

attention-based hidden representation of the tth action.
The objective of the model in the training procedure is to

maximize the cross entropy

1

|S|
|S|∑
i=1

Pr(ŝ|ai) log Pr(ŝ|ai) (9)

where S is the set of all sequences.

E. Model Training

In order to train our model, we need to estimate the
parameters, including W t , U t , W f , U f , W c, U c, Wo, and Uo

in the LTAM, Wa and ba in attention on hidden states, and
Z T in the softmax layer. The parameters can be summarized
as � = (W t , U t , W f , U f , W c, U c, W o, Uo, W a, ba, Z). The

Fig. 2. Two game scene examples of Qiannvyouhun. (a) Two game roles
are combating with each other at an arena. (b) Game player is shopping in a
virtual market.

objective function of the model in the training phase is the
negative cross entropy on conditional probability of the next
action with respect to an observed action sequence, as shown
in the following equation:

arg min
�

− 1

|S|
|S|∑
i=1

Pr(ŝ|ai) log Pr(ŝ|ai). (10)

Each instance of training data consists of a sequence of
actions. For example, if three actions, a1, a2, and a3, are
taken as input to the model, there data examples are generated:
1) [a1] for a2; 2) [a1, a2] for a3; and 3) [a1, a2, a3] for the next
action a4.

The action vectors are initialized randomly at the begin-
ning and embedded as a vector of G dimensionality. Each
action vector is trained using a stochastic gradient, and the
gradient is obtained via backpropagation through time (BPTT).
At every step of stochastic gradient descent, one can sample a
fixed-length sequence of a random player, compute the error
gradient from the network recurrently until all the actions
in the sequence are input and use the gradient to update
action vectors and softmax parameter Z . During the training
procedure, cross entropy is utilized for the loss function.

The model is trained to generate action sequences. In the
generation procedure, an action a∗ is given at the beginning,
and the next action is predicted based on the given action.
Then, the model predicts the succeeding action based on
the generated prefix. For example, if given an action at ,
the action at+1 is predicted based on the action at by the
model, the action at+2 is predicted based on the generated
action at+1, and so on.

V. DATA SET OVERVIEW

We evaluated our model with a large-scale real-world data
set collected by NetEase Inc., a Chinese Internet technology
company. As one of the largest Internet and video game
company, NetEase Inc. develops and operates online PC and
mobile games. The data set that we used contains action logs
of QianNvYouHun,1 a computer game developed by NetEase
Inc.2 Qiannvyouhun is a multiple RPG that is designed on the
basis of a love story between a folk people and a female ghost.
There are many game scenes designed in the game, such as
combating with other players and shopping in a virtual market,
as shown in Fig. 2.

1http://xqn.163.com
2http://game.163.com

Authorized licensed use limited to: Zhejiang University. Downloaded on February 03,2021 at 03:32:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Fig. 3. Basic analysis of the data set. (a) CDF of action records in terms of levels. (b) Confusion matrix of different levels. (c) Confusion matrix of different
classes.

Fig. 4. Few action sequences in Qiannvyouhun.

In the data set, there are more than 424 million records
from more than 81 000 players during the time period from
September 21, 2018, to October 11, 2018. Each record consists
of: 1) identification (ID) of one player (anonymized); 2) the
time stamp when an action is performed; 3) action ID; 4) the
description of the corresponding action; 5) the level of the
player when he/she performs the action; and 6) the game class
of the player when performing the action. The data set does
not contain any personally identifiable information, where the
“player ID” has been anonymized and does not contain any
player metadata. All the researchers are regulated by the strict
nondisclosure agreement, and the data set is located in a secure
off-line server.

In the data set, there are many types of actions, such as
log in, log out, completing quests, interactions, entering a
dungeon, trading, and chatting or communicating with other
players. In order to give a better understanding of the data set,
we present some action sequences in Fig. 4, where each slot
represents action and each type of action is indicated by one
color. In Fig. 4, each action sequence consists of 300 con-
tinuous actions, where the actions are performed one by one.
It can be seen that most behavior sequences are composed
of different types of actions, except the third one from the
end, where most actions are in red. We found that the red
color here indicates the social action type, such as chatting or
communicating with other players. In other words, the third
sequence from the end indicates that one player chats or
communicates frequently with others but rarely performs other
types of actions. For the other action sequences, the actions
in purple and blue color occur frequently in the sequences,
which represents the actions of completing quests and killing
creatures, respectively.

To use the data set for evaluation, we performed a pre-
processing work.

Extracting Key Actions: When we refer to player actions,
we were primarily concerned with the key actions players
perform. For example, completing a particular set of quests
is a sequence of “actions” and of interest for building our
behavior model. Lower level actions that are dispensable, such
as using some kinds of skills, jumping, or running, however,
are not taken into consideration. In other words, the actions
we were concerned with is when a significant game event is
caused by the player (either by atomic actions or through a
sequence of actions) and can be interpreted as an attribute
or indicator of the game content the player experiences. For
example, the actions of entering the dungeon, killing creatures,
collecting items from the corpses of creatures that have been
killed, and, finally, leaving the dungeon represent the game
event of completing a dungeon quest. After extracting key
actions, there were 8904 key actions in total.

Filtering Players: Our study focused on the players who
have relatively rich action records, and we removed the players
whose key action records were less than 1000. Overall, there
are about 22 000 players remained and about 51 million key
action records in total, which were used in the following
experiments.

Basic Analysis: We performed basic analysis on the data set
after preprocessing. During the data collection period, players
level up progressively. According to our observation, players
reach different final levels till the end of the data collection.
There are 109 levels in total in the game and 13 game classes.
We computed the cumulative distribution function of the action
logs in terms of game levels, as shown in Fig. 3(a). It can be
seen that Level 69 and Level 89 are two distinct boundaries,
for which there are relatively rich action logs.

We also investigated the cosine similarity among actions
in different levels [see Fig. 3(b)] and among different game
classes as well [see Fig. 3(c)], to observe the differences in
how actions distribute in different levels or classes. Here,
each level was represented as a vector of 8904 dimensionality,
where each dimension was one action and its value was the
occurrences of the action in the level. Even for the same action,
the occurrences are significantly different at different levels.
Fortunately, cosine similarity is not sensitive to the absolute
values of vectors. The cosine similarity was computed between
any two levels, as shown in Fig. 3(b). As we can see, the levels
from 30 to 80 and the levels from 70 to 100 have similar action
distributions. However, for the low levels, such as from 0 to 10,
the action distributions are a little different. It may be because

Authorized licensed use limited to: Zhejiang University. Downloaded on February 03,2021 at 03:32:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: PLAYER BEHAVIOR MODELING FOR ENHANCING ROLE-PLAYING GAME ENGAGEMENT 7

Fig. 5. Generation performance with varying (a) sequence length, (b) embedding size, and (c) attention size.

player characters gain new skills as they level up, and they use
different skills at different levels. Besides, for the levels that
are a little far away from each other, such as a low Level 1
and a high Level 100, the action distributions are different.

We also computed the cosine similarity between any two
classes that were similarly represented using the occurrences
of each action, as shown in Fig. 3(c). For most game classes,
the action distributions are similar. Among all the classes,
Class 9 and Class 12 have the greatest difference in action
distributions. Class 9 is Cleric, a healer, who has powers to
heal wounds, protects their allies, and, sometimes, resurrects
the dead, while Class 12 is Assassin who usually has attacks
that cause a high amount of damage in a short amount of time.

VI. EXPERIMENTS

In this section, we conducted extensive experiments to
show the effectiveness of our model. We first describe the
performance metric used in the experiments.

A. Experiment Setup

1) Performance Measurement: We defined a metric to
measure the generation performance, called action sequence
evaluation understudy (ASEU), inspired by the idea of bilin-
gual evaluation understudy (BLEU) [33]. BLEU is an algo-
rithm for evaluating the quality of the text that has been
machine-translated from one natural language to another. For
a generated action sequence, quality is considered to be the
correspondence between an action sequence generated by our
model and that of a human player: “the closer a sequence
generation is to a human player, the better it is”—this is the
central idea behind ASEU.

We first computed the geometric average of n-gram preci-
sion [33], pn, by (11). n-gram is a contiguous sequence of n
actions from a given sequence. For example, for a generated
sequence consisting of 20 actions, the number of 2-gram,
3-gram, and 6-gram is 19, 18, and 15, respectively. We counted
the number of the n-gram that can be matched in the references
and divided it by the total number of the candidate n-grams to
get the n-gram precision. If there are 10 that can be matched in
the references out of the total 19 2-grams, the 2-gram precision
is 10/19

pn =
∑m−(n−1)

i=1 1(n−gram=true)

m − (n − 1)
(11)

where 1(·) is an indicator function, m is the length of the
generated action sequence, (m − (n − 1)) is the number of the
total n-grams in the generated action sequence of m length,
and (n − gram = true) means that the candidate n-gram can be

matched in the references. Then, ASEU-N can be computed
by

ASEU–N = exp

(
N∑

n=1

wn log pn

)
× 100 (12)

where wn is the positive weights, and N is the maximum value
of n-gram.

In our work, we tested N = 2, 3, 4, 5, and 6, respectively,
and used uniform weights wn = 1/N .

Given the same action, the model can generate many
action sequences. Thus, we used self-ASEU to evaluate the
diversity of the generated behavioral sequences, inspired by
self-BLEU [34]. ASEU can be used to evaluate how one
action sequence resembles the rest in a generated collection.
Regarding one generated sequence as the hypothesis and the
others as references, we calculated the ASEU score for every
generated sequence and defined the average ASEU score to be
the self-ASEU of the generated sequences. A lower self-ASEU
score means that the generated sequences are more diverse
given the same action.

2) Compared Approaches: We selected the following algo-
rithms for comparison.

1) Random refers to predicting the succeeding action by
randomly selecting one action from all the candidate
actions based on their occurrences in the data set,
to generate a sequence.

2) HMM [35] forms a Markov chain with hidden states that
are mapped to the observed action, and the probability
distribution of the observed action depends on the hidden
states.

3) SeqGAN [36] is a discrete RNN-based generator.
We also evaluated LeakGAN [37], another discrete
RNN-based generator, but, since it is similar to seqGAN
and has lower performance and higher computation cost,
we omit it for brevity.

4) Transformer [38] is a network architecture based solely
on attention mechanisms, dispensing with recurrence
and convolutions entirely.

5) LSTM-Transformer applies LSTM on the input vectors
and then takes the cell output as the input to the
transformer.

B. Results and Analysis

1) Performance Study With Respect to Sequence Length,
Embedding Size, and Attention Size: We first investigated the
performance of our model with varying sequence length L,
embedding size G, and attention size D, as shown in Fig. 5.
The sequence length L refers to the number of actions

Authorized licensed use limited to: Zhejiang University. Downloaded on February 03,2021 at 03:32:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

TABLE I

ASEU SCORE COMPARISON WITH OTHER APPROACHES

in a sequence input to the model during the training pro-
cedure, embedding size G refers to the dimensionality of
each combination vector of action vector, level vector, and
class vector, and attention size D refers to the number
of neurons in the attention network. As we can see from
Fig. 5(a), the ASEU scores increase when using ten actions
in a sequence to 20 actions, slightly change from 20 actions
to 200 actions, and even slightly decrease when using
100 actions. In Fig. 5(b), there is an improvement in ASEU
scores when using 16 dimensions to 32 dimensions and a slight
change from 32 dimensions to 128 dimensions but a decline
when using 256 dimensions to represent the combination
vector. We also tested the generation performance with varying
attention size, as shown in Fig. 5(c). The ASEU slightly
changes when varying the attention size from 8 to 64.

In the following experiments, we set the embedding size
to 32, the attention size to 16, and the sequence length
to 20. In other words, the combination vector of action,
level, and the class was represented as a vector of 32 dimen-
sionality. In the attention network, we used 16 neurons.
We sliced the action records into sequences, and each sequence
consists of 20 actions. In the training procedure, we used
50 000 sequences each of which consisting of 20 actions to
train the model, among which 40 000 sequences were used
as the training set and the rest 10 000 used as the validation
set. We used another 50 000 sequences as the test set, each
of which consists of 20 actions. In the training procedure,
we employed the fivefold cross-validation policy.

2) Comparison With Other Approaches: We compared
our model with other approaches, as shown in Table I.
We built an HMM with 64 hidden states, a seqGAN,
a transformer (16 heads and three hidden layers), and an
LSTM-Transformer to generate action sequences, respectively.
All of the approaches were trained using sequences consisting
of 20 actions. In practice, we tuned different parameters
for each approach to achieve the best performance. For all
the approaches, in the generation procedure, we generated
sequences consisting of 20 actions. The length of the generated
sequences is the same as that of the reference sequences in the
test data. For a given action, we generated 2000 sequences, and
the ASEU score is the average value. Here, the references are
all the sequences in the test data when we computed ASEU
scores.

As shown in Table I, for all the approaches, ASEU-N
decreases as N increases, and ASEU-2 is the best performance,
while ASEU-6 is the worst. It is obvious that it is more difficult
to achieve high performance when generating a longer action

TABLE II

SELF-ASEU SCORE COMPARISON WITH OTHER APPROACHES

sequence. As we can see from Table I, our model performs the
best in any ASEU-N (N = 2, 3, 4, 5, 6), and our model > seq-
GAN > LSTM-transformer > Transformer > HMM > Ran-
dom. As N increases, the improvement of our model is
more significant compared with that of other approaches.
In particular, our model achieves an ASEU-6 score of 72.65,
71 higher than Random (72.65 versus 1.68), about nine times
higher than HMM (72.65 versus 7.87), almost three times the
ASEU-6 of Transformer model (72.65 versus 24.03), 34 higher
than that of LSTM-Transformer (72.65 versus 38.53), and
21 higher than that of seqGAN (72.65 versus 51.58). This
suggests the distinct advantage of our model in generating a
longer behavior sequence.

In generating shorter sequences, our model still outper-
forms the other approaches. For example, our model achieves
an ASEU-2 score of 96.49, 44 higher than that of HMM
(96.49 versus 52.76), 30 higher than Transformer (96.49 ver-
sus 67.42), 10 higher than LSTM-Transformer (96.49 versus
85.65), and 4 higher than seqGAN ((96.49 versus 92.88).
In particular, our model produces a much better performance
than LSTM-Transformer, which is an LSTM-based model.
As we mentioned in the related work part, some existing
studies on goal/plan recognition applied LSTM-based models.
The comparison indicates that our model has advantages in
generating action sequences.

We also reported the self-ASEU (see Table II) to measure
the diversity of the 2000 sequences for a given action. A lower
self-ASEU score means a higher diversity. For the diversity
of generated sequences, the transformer performs better than
ours, but its ASEU scores are much worse than ours.

In order to investigate the stability and robustness of
our model, we computed the performance difference of
our model when given different actions to generate action
sequences. We randomly selected 100 actions from all the
8904 key actions as given actions for generation and generated
action sequences, respectively. We computed the variance
when given different actions: 1.08E-05, 1.45E-05, 7.84E-05,
1.09E-04, 1.25E-04 in ASEU-2, ASEU-3, ASEU-4, ASEU-5,
and ASEU-6. The variance is very small, suggesting that
there is a very light difference in generation performance
when different actions are given and out model is stable and
robust.

3) Effectiveness of Different Components: We investigated
the effectiveness of the components to performance, including
attention mechanism and context (level and class), as shown
in Table III. To be specific, we took LTAM (long short
action memory) as a baseline model, in which only actions
were input without considering the context. We added context

Authorized licensed use limited to: Zhejiang University. Downloaded on February 03,2021 at 03:32:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: PLAYER BEHAVIOR MODELING FOR ENHANCING ROLE-PLAYING GAME ENGAGEMENT 9

Fig. 6. Two examples of the generated action sequences.

TABLE III

EFFECTIVENESS OF DIFFERENT COMPONENTS

and attention mechanism to the baseline model and then
compared the ASEU-N (N = 2, 4, 6) with the baseline model,
respectively. “Ours” refers to the model that combines LTAM,
context, and attention mechanism together. Here, the context
involved here refers to Level 69 and Class 0, and the sequences
of Level 69 and Class 0 in the test data were used as
references when computing the ASEU score. As we can
see from Table III, our model performs much better than
the baseline LTAM, further indicating that our model has
advantages in generating actions. Adding context of the actions
makes the greatest contribution to generating action sequences.
Compared to the baseline model that only takes actions as
input, the model that takes player levels and game classes
into consideration makes the performance 8.68, 17.89, and
23.87 higher in ASEU-2, ASEU-4, and ASEU-6, respectively.
The longer the sequence generation, the more significant the
improvement. The comparison further validates the importance
of the context in modeling game player behaviors.

The attention mechanism contributes 0.90, 1.72, and 2.02 in
ASEU-2, ASEU-4, and ASEU-6, respectively, compared with
the baseline model. Although the attention mechanism cannot
improve the performance as significant as adding context,
it can discover which action is important for the next action,
which can help interpret the generation results. Compared
to the baseline model, combining the game context and
attention mechanism significantly improves the performance,
9.34, 19.26, and 25.22 higher than in ASEU-2, ASEU-4, and
ASEU-6, respectively. Our model comprehensively considers
the sequential relationship among actions, game context, and
the contribution of different actions in modeling player behav-
ior patterns, which achieves state-of-the-art performance in
action sequence generation.

4) Performance With Respect to Different Levels: As we
can see from Fig. 3(a), Level 69 and Level 89 are two
distinct boundaries. The actions are different at different levels,
as shown in Fig. 3(b). Thus, we investigated the generation

Fig. 7. Performance with respect to different game levels.

performance with respect to different levels. We divided the
game level into three categories, low [1, 69), medium [69, 89),
and high [89, 109], and trained three-generation models using
the action logs in the corresponding level category. Fig. 7
shows the performance comparison in different levels. It can
be seen that all the ASEU scores in high levels are higher than
those of medium and low levels, and all the ASEU scores in
medium levels are higher than those of low levels. The higher
the level is, the better the performance. It suggests that actions
performed by players with higher levels tend to follow some
patterns. One player with a higher level is more familiar with
the game, and he/she tends to take specific actions following
his/her pattern when completing a quest.

5) Illustration of Generated Sequences: In order to better
understand the generated action sequences, we inspected two
examples from the results, as shown in Fig. 6, each of which
consists of seven actions. The first example is about complet-
ing the quest of punishing the devil. The action sequence starts
with accepting the mission. To complete the quest, it needs
to enter the map of Leifeng Tower and enters a dungeon.
In the dungeon, creatures are killed, and experience points are
received. Then, it leaves the map of Leifeng Tower, and finally,
the mission is completed. In this generated action sequence,
the pairwise relationship between entering and leaving and
the causality between first killing creatures and subsequently
receiving experience points are well preserved. In the second
example, the generated action sequence contains entering and
leaving Leifeng Tower floor by floor, from the 21st to the 23rd
floor. The floors are accessed in order from the lower ones to
the higher ones. Both two examples show the capability of
performing human-like actions of our generation model.

6) Performance on Different Amounts of Training Data:
We also investigated the performance of our model trained

Authorized licensed use limited to: Zhejiang University. Downloaded on February 03,2021 at 03:32:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Fig. 8. Performance with partial data for training.

by different amounts of training data (1%, 10%, 20%, 40%,
60%, and 80%). Training data 10%, for example, mean that
we randomly selected 10% of the action records from the
whole training data set to train the model. We just varied
the training data size but kept the testing data as before. The
random selection of the training data was carried out five times
independently. As we can see from Fig. 8, our model still
performs well when only 10% of training data set, achieving
an ASEU-6 score of 46. The performance increases quickly
when 1%–10% of the training data were used. There is a slight
difference in performance when 20%–100% of the training
data were used. It shows that our model performs stably with
varying amounts of training data even though the small size
of the training data was used for training.

VII. CONCLUSION

In this work, we have proposed a novel framework to
model the behaviors of RPG players. Given only one action,
the model can generate human-like action sequences, which
can be used to design characters that are not controlled by
players to enhance game engagement and further avoid player
churn. The framework includes actions and context encoding,
an LTAM to learn the hidden representations, and an attention
mechanism on hidden representations. The model generates
action sequences by predicting the succeeding action given
the actions previously generated. Extensive experiments were
conducted on a real-world data set of over 51 million action
records from about 22 000 game players in 21 days. The gen-
eration results demonstrate the state-of-the-art performance,
outperforming the other approaches.

Although we have effectively modeled player behaviors,
we must acknowledge that there are still some limitations.
First, our data set used in the experiment is limited to
only one game. Whether our model could be generalized to
other RPGs is still unknown. Second, our model performs
well in ASEU-N, especially when N is relatively small. Its
performance needs to be improved when N is bigger. Third,
our model has not been deployed in practice yet. In future
work, we will address the abovementioned problems, such as
collecting records from other RPGs to evaluate our model,
improving the performance in generating relatively long action
sequences and implementing our model online for practical
applications. Moreover, we can apply our model for action
prediction. Our model can not only generate action sequences
but also predict the next action of players. Predicting the next
action most likely to be performed by players is important

for game companies. If players’ actions can be predicted,
the game company can prepare game sources in advance,
such as uploading maps and highlighting the game equipment
players need next. It can reduce game delay and improve
player experience in games.

REFERENCES

[1] M. Suznjevic and M. Matijasevic, “Player Behavior and traffic charac-
terization for MMORPGs: A survey,” Multimedia Syst., vol. 19, no. 3,
pp. 199–220, Jun. 2013.

[2] J. Tao, J. Xu, L. Gong, Y. Li, C. Fan, and Z. Zhao, “NGUARD: A
game bot detection framework for NetEase MMORPGs,” in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 811–820.

[3] A. L. Jia, S. Shen, R. V. D. Bovenkamp, A. Iosup, F. Kuipers, and
D. H. Epema, “Socializing by gaming: Revealing social relationships in
multiplayer online games,” ACM Trans. Knowl. Discovery Data (TKDD),
vol. 10, no. 2, p. 11, 2015.

[4] G. Pickett, F. Khosmood, and A. Fowler, “Automated generation of
conversational non player characters,” in Proc. AIIDE, 2015, pp. 92–97.

[5] K. Bhatt, “Believability in computer games,” in Expertise in Design,
Design Thinking Research Symposium. Sydney, NSW, Australia: Uni-
versity of Technology, Nov. 2003, p. 81.

[6] F.-Y. Wang, “Computational dissemination: Toward precision and smart
impacts for computational social systems,” IEEE Trans. Comput. Social
Syst., vol. 4, no. 4, pp. 193–195, Dec. 2017.

[7] R. Bartle, “Hearts, clubs, diamonds, spades: Players who suit MUDs,”
J. MUD Res., vol. 1, no. 1, p. 19, 1996.

[8] N. Yee, “Motivations for play in online games,” Cyberpsychol. Behav.,
vol. 9, no. 6, pp. 772–775, Dec. 2006.

[9] B. Harrison and D. L. Roberts, “Using sequential observations to model
and predict player behavior,” in Proc. 6th Int. Conf. Found. Digit. Games
- FDG, 2011, pp. 91–98.

[10] G. Synnaeve and P. Bessiere, “Bayesian modeling of a human
MMORPG player,” AIP Conf. Proc., vol. 1305, no. 1, pp. 67–74, 2011.

[11] M. Sharma, S. Ontañón, M. Mehta, and A. Ram, “Drama management
and player modeling for interactive fiction games,” Comput. Intell.,
vol. 26, no. 2, pp. 183–211, May 2010.

[12] A. Baldominos Gómez, E. A. García, I. Marrero, and Y. S. Achaerandio,
“Real-time prediction of gamers behavior using variable order Markov
and big data technology: A case of study,” Int. J. Interact. Multimedia
Artif. Intell., vol. 3, no. 6, pp. 44–51, 2016.

[13] Y. Xiao, J. Li, Y. Zhu, and Q. Li, “User Behavior prediction of social
hotspots based on multimessage interaction and neural network,” IEEE
Trans. Comput. Social Syst., vol. 7, no. 2, pp. 536–545, Apr. 2020.

[14] Y.-E. Liu et al., “Predicting player moves in an educational game: A
hybrid approach,” in Proc. Educ. Data Mining, 2013, pp. 106–113.

[15] S. J. Lee, Y.-E. Liu, and Z. Popovic, “Learning individual behavior in an
educational game: A data-driven approach,” in Proc. Educ. Data Mining,
2014, pp. 114–121.

[16] G. Wallner, “Sequential analysis of player behavior,” in Proc. Annu.
Symp. Comput.-Human Interact. Play, Oct. 2015, pp. 349–358.

[17] M. Sharma, S. Ontanón, C. R. Strong, M. Mehta, and A. Ram, “Towards
player preference modeling for drama management in interactive sto-
ries,” in Proc. FLAIRS Conf., 2007, pp. 571–576.

[18] T. Mahlmann, A. Drachen, J. Togelius, A. Canossa, and
G. N. Yannakakis, “Predicting player behavior in Tomb Raider:
Underworld,” in Proc. IEEE Conf. Comput. Intell. Games, Aug. 2010,
pp. 178–185.

[19] M. Suznjevic, I. Stupar, and M. Matijasevic, “MMORPG player behavior
model based on player action categories,” in Proc. 10th Annu. Workshop
Netw. Syst. Support Games, Oct. 2011, p. 6.

[20] J. Valls-Vargas, S. Ontanón, and J. Zhu, “Exploring player trace seg-
mentation for dynamic play style prediction,” in Proc. AIIDE, 2015,
pp. 93–99.

[21] S. Makarovych, A. Canossa, J. Togelius, and A. Drachen, “Like a dna
string: Sequence-based player profiling in Tom Clancy’s the division,”
in Proc. AIIDE, 2018, pp. 1–9.

[22] D. Silver et al., “Mastering the game of Go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

[23] G. Kumar, M. Henderson, S. Chan, H. Nguyen, and L. Ngoo, “Question-
answer selection in user to user marketplace conversations,” 2018,
arXiv:1802.01766. [Online]. Available: http://arxiv.org/abs/1802.01766

Authorized licensed use limited to: Zhejiang University. Downloaded on February 03,2021 at 03:32:15 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: PLAYER BEHAVIOR MODELING FOR ENHANCING ROLE-PLAYING GAME ENGAGEMENT 11

[24] B. Wang, T. Sun, and X. S. Zheng, “Beyond winning and los-
ing: Modeling human motivations and behaviors using inverse rein-
forcement learning,” 2018, arXiv:1807.00366. [Online]. Available:
http://arxiv.org/abs/1807.00366

[25] W. Min, B. W. Mott, J. P. Rowe, B. Liu, and J. C. Lester, “Player goal
recognition in open-world digital games with long short-term memory
networks,” in Proc. IJCAI, Jul. 2016, pp. 2590–2596.

[26] F. Bisson, H. Larochelle, and F. Kabanza, “Using a recursive neural
network to learn an agent’s decision model for plan recognition,” in
Proc. IJCAI, 2015, pp. 918–924.

[27] S. Carberry, “Techniques for plan recognition,” User Model. User-
Adapted Interact., vol. 11, nos. 1–2, pp. 31–48, 2001.

[28] D. Hooshyar, M. Yousefi, and H. Lim, “Data-driven approaches to game
player modeling: A systematic literature review,” ACM Comput. Surv.,
vol. 50, no. 6, p. 90, 2018.

[29] T. Rhujittawiwat and V. Kotrajaras, “Learnable buddy: Learnable sup-
portive ai in commercial MMORPG,” in Proc. Int. Conf. Comput.
Games, AI, Animation, Mobile, Educ. Serious Games, 2006, pp. 1–5.

[30] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. Int. Conf. Mach. Learn., 2014, pp. 1188–1196.

[31] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[32] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473. [Online].
Available: http://arxiv.org/abs/1409.0473

[33] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for
automatic evaluation of machine translation,” in Proc. ACL. Strouds-
burg, PA, USA: Association for Computational Linguistics, 2002,
pp. 311–318.

[34] Y. Zhu et al., “Texygen: A benchmarking platform for text genera-
tion models,” 2018, arXiv:1802.01886. [Online]. Available: http://arxiv.
org/abs/1802.01886

[35] A. B. Poritz, “Hidden Markov models: A guided tour,” in Proc. IEEE
Conf. Acoust., Speech Signal Process. (ICASSP), 1988, pp. 7–13.

[36] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence gener-
ative adversarial nets with policy gradient,” in Proc. AAAI, 2017,
pp. 2852–2858.

[37] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long text
generation via adversarial training with leaked information,” in Proc.
AAAI, 2018, pp. 5141–5148.

[38] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

Sha Zhao (Member, IEEE) received the Ph.D.
degree from Zhejiang University, Hangzhou, China,
in 2017.

She visited Human-Computer Interaction Institute,
Carnegie Mellon University, Pittsburgh, PA, USA,
as a Visiting Ph.D. Student, from 2015 to 2016. She
is currently a Post-Doctoral Research Fellow with
the College of Computer Science and Technology,
Zhejiang University. Her research interests include
pervasive computing, data mining, and machine
learning.

Dr. Zhao received the Best Paper Award of ACM UbiComp16.

Yizhi Xu received the B.Sc. degree in electrical
engineering from Zhejiang University, Hangzhou,
China, in 2017, where he is currently pursuing
the master’s degree with the College of Computer
Science and Technology.

His research interests include machine learning
and data mining.

Zhiling Luo received the B.S. and Ph.D. degrees
in computer science from Zhejiang University,
Hangzhou, China, in 2012 and 2017, respectively.

He was an Assistant Professor of computer sci-
ence with Zhejiang University. He was the Visiting
Scholar with the Georgia Institute of Technology,
Atlanta, GA, USA, in 2016. His research interests
include service computing, machine learning, and
data mining.

Jianrong Tao (Member, IEEE) received the B.Sc.
degree in computer science from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2014, and the master’s degree in computer sci-
ence from Zhejiang University, Hangzhou, China,
in 2017.

He is currently an Algorithm Expert with the Fuxi
AI Lab, NetEase Inc., Hangzhou. His research inter-
ests include machine learning, data mining, network
analysis, and user profiling.

Shijian Li received the Ph.D. degree from Zhejiang
University, Hangzhou, China, in 2006.

In 2010, he was a Visiting Scholar with the Insti-
tute Telecom SudParis, Évry, France. He is currently
with the College of Computer Science and Tech-
nology, Zhejiang University. He has published over
40 articles. His research interests include sensor net-
works, ubiquitous computing, and social computing.

Dr. Li also serves as a reviewer or a PC member
of more than ten conferences. He also serves as an
Editor for the International Journal of Distributed
Sensor Networks.

Changjie Fan received the B.S. and Ph.D. degrees
in computer science from the University of Science
and Technology of China (USTC), Hefei, China,
in 2003 and 2008, respectively.

He is currently the Director of the FUXI AI
Lab, NetEase Inc., Hangzhou, China. His research
interests include multiagent systems, reinforcement
learning, game theory, and knowledge discovery.

Gang Pan (Member, IEEE) received the B.Eng. and
Ph.D. degrees from Zhejiang University, Hangzhou,
China, in 1998 and 2004, respectively.

From 2007 to 2008, he was a Visiting Scholar
with the University of California at Los Angeles, Los
Angeles, CA, USA. He is currently a Professor with
the Department of Computer Science and the Deputy
Director of the State Key Lab of CAD&CG, Zhe-
jiang University. His current interests include artifi-
cial intelligence, pervasive computing, brain-inspired
computing, and brain–machine interfaces.

Authorized licensed use limited to: Zhejiang University. Downloaded on February 03,2021 at 03:32:15 UTC from IEEE Xplore. Restrictions apply.

