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WHO ARE THE 
SMARTPHONE USERS?
Identifying user groups  
with apps usage behaviors
Understanding smartphone users is fundamental for creating better smartphones, improving the smartphone 
usage experience, and generating generalizable and reproducible research. However, smartphone manufacturers 
and most of the mobile computing research community make a simplifying assumption that all smartphone 
users are similar or, at best, constitute a small number of user types, based on their behaviors. Manufacturers 
design phones for the broadest audience and hope they work for all users. Researchers mostly analyze data 
from smartphone-based user studies and report results without accounting for the many different groups 
of people that make up the user base of smartphones. We challenge these elementary characterizations of 
smartphone users and show evidence of the existence of a much more diverse set of users. We analyzed one 
month of application usage from 106,762 Android users and discovered 382 distinct types of users based on 
their application usage behaviors, using our own two-step clustering and feature ranking selection approach, 
and gave a meaningful label to the users in each cluster, such as Screen Checkers and Young Parents. Our 
results have profound implications on the reproducibility and reliability of mobile computing studies, design 
and development of applications, determination of which apps should be pre-installed on a smartphone and,  
in general, on the smartphone usage experience for different types of users.  

Editors: Nic Lane and Xia Zhou 
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In the first step, K-Means is used to reduce 
the available data points into a smaller 
representation and, in the second step,  
we used the centroids generated by 
K-Means as input for MeanShift, which 
automatically estimates the number of 
clusters in the data. The results from our 
two-step clustering were evaluated using 
a performance metric that considers 
penalties for complexity and non-uniform 
distribution of users across clusters. 

We also proposed a novel feature-ranking 
scheme to identify meaningful idiosyncratic 
features for the selected clusters, which were 
those features that help distinguish each 
cluster from the “average user,” a fictional 
user whose usage characteristics are equal to 
the average application usage of all users in 
the dataset. Then, we assigned a meaningful 
label to the users in each cluster based on 
their distinctive app usage behaviors. 

FINDINGS
We identified different types of users from 
a dataset from the smartphones of 106,762 
users from multiple provinces in China. For 
each smartphone, the dataset contains hourly 

updates on the 10 most recently used apps for 
the month of September 2015. All the apps 
were grouped into 29 semantic app categories. 
With our two-step clustering method, we 
obtained 382 clusters. By analyzing the 
clustering results, we found that:

1. Most clusters consist of 100-300 users. 
Figure 1 (a) shows the quantity of clusters 
with respect to the number of users. Among 
the 382 clusters, there are 85 percent of 
clusters consisting of 100-300 users, and 
only 9 clusters consisting of more than 
1,000 users. 

2. The centroids of clusters were nicely 
separated by our approach. For the 
visualization purpose, we used the t-SNE 
[10] transformation to represent the 382 
cluster centroids in two dimensional 
space, shown in Figure 1 (b). The centroids 
appear to be nicely separated, giving a visual 
indication that our clustering approach was 
successful.

3. Most of the user groups have very 
distinctive app usage behaviors. With 

our feature-ranking scheme, the top 5 
highest and lowest idiosyncratic features 
were selected to distinguish the app usage 
behaviors for the users in each cluster. For 
example, for the 3814 users in the second 
biggest cluster ranked by size, all of the 
top 5 highest idiosyncratic features are 
about theme apps, and the top 5 lowest 
idiosyncratic features are about launch apps, 
shown in Figure 2. It means that, compared 
with the users in other clusters, the users 
in this cluster use theme-related apps very 
often but rarely use launcher apps. They 
frequently wake up their smartphone but 
rarely unlock the screen and enter the main 
interface. We hypothesize that they are 
waking up their phones just to check the 
time or to see if there are any notifications. 
Thus, we tagged the users in this cluster as 
Screen Checkers. As shown in Figure 2 (c), 
this cluster has an even gender distribution, 
with the largest proportion of users being 
between 25-34 years old (41%) and half of 
the users having low income.

We also found some smaller yet interesting 
clusters composed of mainly male or female 
users. For example, Cluster219 consists of 

FIGURE 1. (a) Quantity of clusters with respect to number of users;  
(b) t-SNE representation of the cluster centroids.

FIGURE 2. The second-biggest cluster (3,814 users).

(a) Top 5 highest idiosyncratic features (b) Top 5 lowest idiosyncratic features

(a) Top 5 highest 
idiosyncratic features

(b) Top 5 lowest 
idiosyncratic features

(c) Proportion of users in each 
demographic attribute

(c) Proportion of users in each 
demographic attribute

FIGURE 3. Cluster219 (164 users).
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T he number and popularity of 
mobile applications is rising 
dramatically at the same time 
as there is an accelerating rate 
of adoption of smartphones. 

Meanwhile, a great number of research 
studies in recent years have sought to 
understand users’ smartphone application 
usage behaviors, such as how individuals 
install apps [1], how many daily interactions 
they have with apps [2], how long the 
average application session lasts [3], which 
apps are frequently used together [4]. This 
past work analyzed application usage in the 
aggregate or explored the range across users. 
They have not explored any differences in 
application usage behavior between groups 
of users. They mostly treat all smartphone 
users as similar, which is a nice simplifying 
assumption for app developers, phone 
manufacturers and mobile carriers, except 
that it does not reflect reality.

The simplifying assumption that all 
smartphone users are similar or, at best, 
constitute a small number of user types, 
has led to a lack of reproducibility and 
generalizability in smartphone studies, as 
highlighted by Church et al [5], who suggest 
that this could be due to the existence of 
different user sub-populations among the 
larger smartphone user population. For 
example, Jones et al. [6] identified three 
distinct clusters of users based on their app 
revisitation patterns, by analyzing three 
months of application launch logs from 165 

users. Banovic et al. [7] identified four types 
of users by analyzing 27 users’ actions on 
emails displayed on their lock screen. Both 
studies are promising and very motivating 
for us in suggesting that there are at least 
4 kinds of users, however their scope is 
limited by only examining a relatively 
simple behavior (revisitation for [6] and 
actions performed on emails for [7]) for 
relatively small populations. We challenge 
the simplifying assumption and attempt 
to show there are many more complex 
and diverse behaviors that make up the 
smartphone user population [8]. 

PROBLEM DEFINITION
Our goal is to discover different smartphone 
user groups through their app usage 
behaviors. A user group refers to a group 
in which the users are similar in a certain 
aspect. Users in different groups may have 
different needs and preferences, which 
makes it natural for the app usage from 
their smartphones to be different. Users 
with similar app usage behaviors may have 
similar needs or preferences, and form a 
group. Discovering smartphone user groups 
based on their app usage behaviors means 
to group users with similar app usage 
behaviors on smartphones. In the case 
of clustering, it groups a set of objects in 
such a way that objects in the same groups 
are most similar [9]. Particularly, it is 
appropriate to explore the similarity among 
the data points and to obtain an intuitive 

interpretation of each cluster embedded 
in the high-dimensional space. Thus, the 
task of discovering user groups is smoothly 
transformed into a clustering problem. 

APPROACH TO IDENTIFY  
USER GROUPS
Users in different groups may have 
different needs and preferences, which 
makes it natural for the app usage from 
their smartphones to be different. Users 
with similar app usage behaviors may 
have similar needs or preferences and 
form a group. To solve this aggregation 
problem, we used unsupervised learning 
methods to cluster users. Please refer to our 
UbiComp’16 paper [8] for the details.

To cluster users based on their similarity of 
app usage behaviors, users were represented 
as vectors by their app usage in different 
time periods. With the very high number of 
distinct apps, it was impossible to directly 
compare application usage behaviors from 
the apps themselves. Instead, individual 
applications are transformed to their 
respective app category. This transformation 
allows us to compare application usage across 
different users interacting with different 
applications from the same category. Users 
can then be represented as vectors with the 
percentage of app category usage weight in 
different time periods, and these vectors can 
be used for clustering. 

Our clustering method consists of two 
steps combining K-Means and MeanShift. 
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Excerpted from “Discovering different kinds of smartphone users through their application usage behaviors,” from UbiComp 2016, Proceedings of the 2016 
ACM International Joint Conference on Pervasive and Ubiquitous Computing, with permission. http://dl.acm.org/citation.cfm?id=2971696 © ACM 2016 
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164 users, of which 88% are female users, 
and 72% are in age range from 25 to 34. It 
was found that the users in the cluster use 
the category of parent_and_child more 
frequently than others in the morning on 
both holidays and workdays, shown in 
Figure 3. More specifically, in the top 5 
highest idiosyncratic features, there are 4 
features related to the category of Parent_
and_child. The applications in this category 
are about how to raise a baby, how to help 
pregnant women, etc. Given the proportion 
of users that are 25-34 years old, we can label 
the users in this cluster as Young Parents. 

4. Demographics have an important 
impact on how users use applications 
on their smartphones. It was found that 
gender, income level and age have a strong 
impact on the usage behaviors. For example, 
users with high-income levels use the 
categories of travel and health_and_fitness 
more frequently on holidays. Female users 
with ages between 25-34 years old use the 
category of parent_and_child more often in 
the daytime on both holidays and workdays, 
while female users between 0-17 use 
education-related apps more frequently in 
the evening on workdays [8].

CONCLUSIONS
By analyzing the app usage behaviors of 
more than 100,000 Android users, we 
discovered 382 distinct kinds of users using 
the proposed approach. With the selected 
general features and idiosyncratic features, 
we can roughly identify and semantically 
label each user group. We found that 
demographics have an important impact 
on how users use applications on their 
smartphones.

The several distinct groups of users we 
discovered prove that the assumption or 
simplification that all smartphone users 
are similar and that they can be treated as 
a uniform group, is not true. Smartphone 
manufacturers, mobile carriers, app 
developers and anyone who impacts the 
kinds of apps that are placed on phones, 
what apps are provided on phones and how 
people select apps to execute, can no longer 
treat users as if they all fit into one big 
group. The findings can be used in practice, 
such as the reproducibility and reliability 
of mobile computing studies, design and 
development of applications, determination 

of which apps should be pre-installed 
on a smartphone and, in general, on the 
smartphone usage experience for different 
types of users. n
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