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ABSTRACT The prevalence of smartphones equipped with various sensors enables pervasive capture of
users’ location data. WiFi scan lists on one smartphone, i.e., scan results of network in a range, can roughly
indicate the physical location of the phone in a time period. Considering the close relationship between
location and daily life, users’ life style can be inferred from their WiFi scan lists. Given the issue of user
privacy, in this paper, we explore anonymized WiFi scan lists to discover users’ life style. Individual life
style about mobility and important places of home and workplaces is discovered, respectively, based on
the stay places extracted from anonymized WiFi scan lists and the reconstructed mobility trajectories. We
first learn the life style about mobility by detecting activity areas from mobility trajectories and introducing
two metrics of activeness and diversity to measure individual mobility. Then, we discover the life style
about the home and workplaces identified from anonymized WiFi scan lists, such as stay duration at home,
activeness of going outside at night, and working hours on weekdays and weekends. Experiments were
conducted on a real-world large-scale dataset, which contains records of smart phone usage of more than
17,000 volunteering participants. Our work is a promising step towards automatically discover people’s life
style from anonymized smartphone data.

INDEX TERMS Anonymized WiFi scan lists, life style, mobility, smartphones.

I. INTRODUCTION

NOWADAYS, more than 2 billion people worldwide
have been covered by smartphones 1, which are becom-

ing people’s essential belongings [1], [2]. Smartphones are
going almost everywhere with their owners, recording where-
abouts of users. The location of smartphones can be captured
as with the rapid development in location-acquisition tech-
nologies, such as GPS, GSM network, and WiFi MAC AP
(Access Point). Moreover, some specific applications, such
as Lausanne data collection campaign (LDCC) for Mobile
Data Challenge [3] and Device Analyzer [4], are developed to
collect the captured location data. A continuous collection of

1https://www.statista.com/statistics/330695/number-of-smartphone-
users-worldwide/

individual history location data for a long duration provides
detailed records on user mobility in daily lives. The ubiq-
uitous and large-scale individual history data derived from
smartphones brings us opportunities as well as challenges to
discover valuable knowledge.

In our daily lives, most of human activities are linked
directly or indirectly to geographic location. Considering
the close relationship between everyday life and geographic
location, it is claimed that one’s general life style can be dis-
covered from his/her history location. Compared with history
location, life style represents a higher level of knowledge,
reflecting the way a person or a group live. For example, does
one user visit diverse places or tend to return to frequently
visited places? Is he/she a homebody who stays at home for
long hours every day? Does he/she often go outside at late
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night? How many working hours in one day? Does he/she
often work extra hours on weekends and holidays?

Discovering users’ life style enable new and targeted ser-
vice opportunities based on their location and other location-
specific variables such as time of day, which can lead to en-
hanced user experience, improved life quality, potential busi-
ness benefits, etc. More specifically, knowing users’ life style
from their geographic location has a manifold of application
scenarios, such as smart recommendation system, context-
based computing system, smart environment, and personal-
ized services. For example, popular tourist attractions can be
recommended to one user who often visits new and diverse
places, economical tickets or hotels as well. For the users
who prefer to stay at home for relatively long hours every
day, we could suggest some popular movies, TV shows, or
books to them for entertainment and killing time at home. For
the users who frequently go outside in the evening or at late
night, navigation or taxi services could be recommended to
them at the right time. Meanwhile, the discovered knowledge
about life style can be used for improving human models,
such as SmartShadow [5] and CyberI [6].

There have been several studies on discovering users’ life
style from historical location captured by smartphones. They
analyzed the smartphone location data captured through GPS
(Global Positioning System), CDR (Call Detail Record),
WiFi, and GSM (Global System for Mobile Communica-
tion), to discover important places in daily life, mine indi-
vidual mobility patterns, and infer daily routines and social
ties. For example, Jiang et al. identified users’ daily mobility
networks and extracted mobility patterns from raw CDRs [7].
They discovered daily motifs consisting of one to four places,
and analyzed patterns of tours and trip-chaining behaviors in
daily mobility networks. Diao et al. inferred activity patterns
from mobile phone traces, such as working at home, eating
meal outside of home, outdoor recreation, and routine shop-
ping [8]. Zhao et al. discovered individual’s life regularity
from anonymized WiFi logs, such as the visiting orders
of different places [9]. Nguyen et al. measured the social
similarity among mobile phone users by analyzing their cell
tower logs and Bluetooth proximity traces, and determined
social groups among individuals in human society [10].

Many studies have learned users’ life style using history
location data derived from GPS and GSM network. However,
there are some limitations of GPS and GSM network data.
To be specific, it was found that the continuous operation of
GPS at a fine temporal and spatial scale can shorten battery
lifetime of mobile phones significantly [11]. Although GSM
saves cell phone battery, it cannot provide precise localization
information. Compared with GPS and GSM network, WiFi
logs of smartphones are relatively easily to be collected, such
as WiFi AP MAC addresses. Taking advantage of the rapid
growth in recent years of wireless access points in urban
areas, localization using WiFi has been becoming popular. In
this work, we attempt to discover individual life style from
WiFi scan lists. WiFi scan list refers to a list of WiFi APs that
is scanned on smartphones when one user visits a place. The

WiFi APs are periodically scanned and change as one user
moves among different places, and the WiFi scan list changes
accordingly. Thus, the WiFi scan lists can roughly indicate
the physical location of the phone in a certain time period,
providing us an opportunity to discover users’ life style.

Given the issue of user privacy, we explore anonymized
WiFi scan lists. Although the anonymized WiFi scan lists
make it more challenging to discover users’ life style, the
users’ privacy is protected. The location data used in some
current studies are sensitive to users’ privacy, such as GPS
data with detailed longitude and latitude. Mobility data is
among the most sensitive data currently being collected [12].
Blumberg et al. pointed out that, a list of potentially profes-
sional and personal information could be inferred about an
individual knowing only his mobility trace [13]. Four spatio-
temporal points are enough to uniquely identify 95% of
individuals in a dataset, where the location of the individual
is specified hourly [12].

In this paper, we address the discovery of people’s life
style from anonymized WiFi scan lists. To this end, we first
extract stay places from anonymized WiFi scan lists and
reconstruct one’s mobility trajectories by building a mobility
graph. Then, we learn the life style related to mobility and
the important places of home and workplaces. A large-scale
real-world dataset of WiFi scan lists collected by Device
Analyzer [4] was used for evaluation, containing over 17,000
participants from more than 150 countries in the world.

The contributions of this work are three-fold:
1) We discover people’s life style from anonymized WiFi

scan lists. Although the anonymous data makes it more
challenging, we can still discover individual life style. Our
work is a promising step towards automatically mining
people’s life style from anonymized mobility data cap-
tured by smartphones.

2) We measure users’ mobility in terms of activeness and
diversity based on the activity areas that are detected from
the mobility graphs through the method of community
detection.

3) We learn the life style related two important places in our
daily lives: home and workplaces, which are identified
from anonymized WiFi scan lists.

The remainder of the paper is organized as follows. In
Section II, the related work is reviewed. An overview about
the data used in this study is given in Section III. Section
IV describes the approach to discovering life style from
anonymized WiFi scan lists. Section V describes how to
extract users’ stay places and reconstruct mobility trajecto-
ries. The life style about mobility is learned in Section VI.
In Section VII, we discover the life style about home and
workplaces. Our conclusion and discussion on the future
work are given in Section VIII.

II. RELATED WORK
The increasing availability of individual location history data
has brought about many relevant studies in the last decades,
such as extracting significant places, mining trajectories or
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mobility, detecting social events, inferring social relationship
between users, and discovering daily routines.

The studies in [14]–[17] identified significant places from
smartphone traces. For example, Isaacman et al. identified
generally important locations and discerned semantically
meaningful locations, such as home and workplaces from
anonymized cellular network [14]. Do et al. addressed the
problem of automatic place labeling based on co-occurrence
of WiFi AP and GPS data [15]. The frequently visited places
were recognized reliably (over 80%) while it was much
more challenging to recognize infrequent places. Montoliu
et al. discovered places-of-interest from location information
integrating GPS, WiFi, GSM and accelerometer sensors [16].
Dousse et al. inferred significant places directly from a set of
raw WiFi fingerprints by a density based clustering approach
[17].

Among [18]–[22], users’ mobility or movement was mined
from mobile phone data. Mobility patterns exhibit time-of-
day periodicity and strong location preference [18]. It was
discovered that people tend to follow simple reproducible
patterns. Alhasoun et al. inferred individual home/ work
locations by analyzing users’ CDRs, then investigated the
formation of segregated communities based on users’ home
and work locations, and estimated people flows within the
city within a day time scale [20]. Bayir et al. used cellular
networks of real-world cell phone data to analyze human
mobility in city-wide level. They found that a total of 15%
of a cell phone user’s time is spent on average in locations
that each appears with less than 1% of total time [21].

More recently, studies have focused on the macroscopic
structure of mobile devices such as communities of nodes
that meet each other frequently. Such community structure
is generally assumed because of the social nature of human
mobility. For example, Hossmann et al. found that mobility
shows typical small world characteristics by representing a
mobility scenario as a weighted contact graph, and analyzing
the structure of a scenario using tools from complex network
analysis and graph theory [23]. Liang et al. studied the impact
factors that may affect the regularity and variability of human
mobility patterns using social network analysis [24]. They
showed that lots of factors such as environmental, temporal
and age factors contribute to the shape of human mobility
patterns. Many studies have analyzed the location data to
detect social events and infer social relationship [23]–[27].
For example, Traag et al. introduced a Bayesian location
inference framework to detect social events in massive mo-
bile phone data [25]. Calabrese et al. showed that there is a
strong correlation in that: people who live close to an event
are preferentially attracted by it; events of the same type
show similar spatial distribution of origins [26]. Zignani et
al. deduced social relationships from traces by projections of
the entire system node, geo-community on nodes [27].

It has been shown that users’ daily routines were discov-
ered from location data [9], [28]–[30]. For example, Farrahi
et al. automatically discovered location-driven routines from
the day in the life of a person without any supervision

TABLE 1: Sample of anonymous WiFi scan lists in the
dataset.

 Time  
 2013-01-25T12:20:55.576 ScanComplete: 5 
1 2013-01-25T12:20:55.576 Anonymized AP: 4724809ed90f2825cf0cec381c 
2 2013-01-25T12:20:55.579 Anonymized AP: f5d92bf14c73c58d6a2e3706ad 
3 2013-01-25T12:20:55.580 Anonymized AP: 6ed268b401af7995197a7aad57 
4 2013-01-25T12:20:55.580 Anonymized AP: 7b6d307fe4021bf0d13b933af1  
5 2013-01-25T12:20:55.580 Anonymized AP: a1272298ee210dacd5adf639aa 

 

[28]. The discovered daily routines include “going to work
at 10am”, “leaving work at night”, “being at home in the
mornings and evenings while being out in the afternoon”
and so on. Yang et al. mined individual life pattern based
on GPS data collected by GPS devices [29], and focused
on significant places of individual life. Ying et al. discov-
ered trajectory patterns of users, namely GTS (Geographic-
Temporal-Semantic) patterns, to capture frequent movements
by taking into account users’ geographic-triggered inten-
tions, temporal-triggered intentions and semantic-triggered
intentions [30]. Zhao et al. discovered people’s life patterns,
capturing individual’s life regularity from anonymous WiFi
scan lists [9].

To summarize, there have been many studies to learn
users’ mobility, life patterns and social relationship from
history location data. However, there are some limitations.
First, the scale of some location data was limited. To be
specific, some data was collected from a specific population,
in limited regions, and in a relatively short duration. Second,
some mobility data used in aforementioned works was sen-
sitive to users’ privacy, such as GPS data with longitude and
latitude. In this paper, we explore anonymized WiFi scan lists
to discover people’s life pattern, and conduct experiments on
a large-scale real-world dataset that was collected from over
17,000 volunteers from all over the world.

III. DATA OVERVIEW AND PREPROCESSING
A. DATA OVERVIEW
The dataset used in this work is called Device Analyzer
dataset, a collection of smartphone usage of more than 17,000
volunteering participants from over 150 countries. The vol-
unteers have installed a copy of Device Analyzer from the
Android market and consented to their data being collected
[4]. Device Analyzer collects a rich, highly detailed time-
series log of approximately 300 different events, and there
are 37 attributes of phone data in total, including CDR, app
usage, alarm, battery, WiFi, etc.2. The dataset has been made
publicly available for the first time in the context of the
UbiComp/ISWC 2014 Programming Competition. Here, we
focus on the anonymized WiFi scan lists, each of which
consists of the scanned time and anonymized AP MAC
addresses. A sample of the WiFi scan lists is shown in Tab.
1. ‘ScanComplete’ is a marker that indicates that a WiFi
scan finished. The value contains the number of visible APs,

2http://deviceanalyzer.cl.cam.ac.uk/keyValuePairs.htm
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FIGURE 1: The length and scan interval of the WiFi scan
lists. a) the length, b) the scan interval.
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FIGURE 2: a) The scan frequency of the scan lists and b) the
duration of the WiFi logs of all the users.

which follows immediately after this marker. In the sample,
the scan list consists of 5 anonymized scanned APs.

According to our observation, there are more than one
visible AP in most scan lists. We define the number of the
APs in each WiFi scan list as the length of the WiFi scan list.
Fig. 1(a) shows the the distribution of the WiFi scan lists’
length of all the users in their duration. The x-axis is the
length of WiFi scan lists, and the y-axis is the proportion of
the scan lists with the exact length. As we can see, about 19%
of the scan lists have only one AP, and about 16% consist of
2 APs. Almost 85% of the scan lists consist of less than 10
APs, while only about 3% consist of more than 20 APs. We
also investigated the scan interval, shown in Fig 1(b). Most
scan lists are scanned less than every 10 minutes. As we can
see, about 85% of scan lists are scanned every five and four
minutes.

B. PREPROCESSING
We first performed preprocessing work and filtering. Fig.
2(a) shows the scan frequency of each day for the selected
users, , i.e., how many WiFi scan lists are scanned in one
day. The horizontal axis is the scan frequency in each day,
and the vertical axis is the proportion of the days with the
exact scan frequency. As we can see, there are two obvious
peaks, which are 1 and 288, respectively. The scan frequency
in the range from 20 to 270 distributes evenly. Few days are
with scan frequency more than 300. The scan frequency of
each day depends on the on-off state of Device Analyzer
and WiFi subsystems. Some users may occasionally launch
Device Analyzer someday and quit it immediately, and their
WiFi logs are scanned only once on many days. For the users
who always keep both of the WiFi subsystem and Device
Analyzer on, the WiFi logs are scanned 288 times (one scan
every 5 minutes, and 12 scan times in one hour). According
to our calculation, there are about 80% of the days with scan

Home and workplace identification

Anonymized WiFi scanlists

Discovering life style about mobilityDiscovering life style about 
home and workplaces

Activity areas detection

cc

Mobility diversity Mobility activeness

Graph

Clustering

Clustering

Community detection

Mobility trajectories
reconstruction

Stay place
extraction

FIGURE 3: Framework to discovering life style from
anonymized WiFi scan lists.

frequency higher than 40. Considering low scan frequency
makes the data sparse, we remove the days on which the
number of scan lists is less than 40 for each user.

According to our observation, the duration of WiFi logs
of different participants varies from a day to nearly three
years, since they join the data collection program at different
time. As shown in Fig. 2(b), around 90% of the users have
contributed data less than six months. Here, we consider
users whose duration is more than six months, and there are
746 users in total, which will be used in the following experi-
ments. In this work, we focus on the WiFi logs on weekdays,
since the patterns of workdays are more representative [29].

IV. APPROACH TO DISCOVERING LIFE STYLE FROM
ANONYMIZED WIFI SCAN LISTS
In order to discover individual life style, it is necessary to first
extract stay places for each user from his/her anonymized
WiFi scan lists. Then, incorporating the time stamp of each
stay place, we reconstruct one user’s trajectories to depict
his/her mobility by building a graph. Based on the extracted
stay places and the trajectories on the mobility graph, the life
style related to mobility and the important places of home
and workplaces is learned, respectively. To learn the life style
related to mobility, we detect each users’ activity areas from
each user’s mobility graph through the idea of community
detection. In each activity area, one user frequently moves
among the places for specific requirements. We then mea-
sure users’ mobility by introducing two metrics of mobility
diversity and activeness based on the activity areas. For the
discovery of life style related to home and workplaces, we
first identify home and workplaces from the extracted stay
places by the method of clustering, and then analyze the life
style, such as stay duration at home every day, activeness
of going outside at night, and working hours on workdays
and weekends. Fig. 3 shows the framework to discovering
individual life style from anonymized WiFi scan lists.

V. RECONSTRUCTING MOBILITY TRAJECTORIES
A WiFi scan list is recorded periodically. It roughly indicates
the physical location of the phone at the time. In this section,
we first extract stay places from WiFi scan lists, and then
depict the mobility trajectories by building a graph.
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(a)

Beginning Ending Stay place ID 
2013/2/11 0:02 2013/2/11 08:12 1 
2013/2/11 08:32 2013/2/11 10:02 4 
2013/2/11 10:22 2013/2/11 10:47 4 
2013/2/11 11:48 2013/2/11 12:13 2 
2013/2/11 13:29 2013/2/11 14:04 4 
2013/2/11 14:09 2013/2/11 15:40 5 
2013/2/11 16:04 2013/2/11 17:28 2 
2013/2/11 18:02 2013/2/11 19:27 2 
2013/2/11 19:46 2013/2/11 23:57 1 

(b)

FIGURE 4: The results of stay place extraction from User
A’s anonymized WiFi scan lists. a) The 8 selected stay places,
b) A sample of User A’s mobility records.

A. EXTRACTING STAY PLACES
In the real-world, some places are frequently visited while
some are visited less often or only fleetingly. For stay place
detection, a big challenge is how to deal with the intermittent
APs during users’ moving. We take one’s stay places that
has been visited for a significant amount of time into con-
sideration and ignore those places where the user just passes
by. Here, we remove the WiFi APs that appear less than 10
minutes. A stay-place pi can be detected when the same AP
MAC addresses appear in the consecutive WiFi scan lists. In
a long duration at the same place, one’s WiFi scan lists are
similar, consisting of the APs around the place. The scan lists
can be taken as coordinates of the physical place. Mapping
continuous coordinates onto a discrete set of places is nothing
else than a clustering exercise [17]. Scan lists in the same
cluster represent a stay place pi and each scan list belongs to
only one cluster. Here, the UIM clustering algorithm [31] is
employed.

By the UIM algorithm, firstly, the scan lists that frequently
appear together are selected and defined as a good set of
scan lists. Sequentially, the similarity between the scan lists
in the good set is computed and a similarity graph Gs is
constructed. Then, a candidate cluster set Cc is obtained by
clustering the vertex of theGs. Finally, the candidate clusters
are merged based on the similarity measures to obtain the
set CF of final clusters. Each cluster in CF represents a stay
place.

1) Results of stay place extraction
We took one user sample as an example, named User A, to
show the results of stay place extraction. There are 95 stay

FIGURE 5: User A’s mobility graph.

places extracted from his/her anonymized WiFi scan lists,
in each of which he/she stays more than 10 minutes. Here,
we selected the top 8 stay places to analyze, each of which
appears more than 10% of days, since 90% of one’s locations
appears less than 10% of total time [21]. Fig. 4(a) shows the 8
selected stay places. Each cluster represents one stay place, in
which each node represents a WiFi scan list, and the node size
means the average stay duration. The numbers in the figure
represent the ID of each stay place. As we can see from Fig.
4(a), User A stays at the Place 1 with the biggest node size
for the longest duration in average, while he/she stays at the
Place 4 and Place 8 for relatively short duration.

With the time stamp, the User A’s mobility records are
obtained, indicating he/she visits which place at what time.
Fig. 4(b) shows his/her mobility records on Feb 11th, 2013.
He/she stays in Place 1 overnight (from 0am to 8am), and
in the morning leaves for Place 4. At noon, he/she stays
at Place 2, and then visits Place 4, Place 5, and Place 2
sequentially. At the end of the day, he/she comes back to
Place 4. By comparing two consecutive mobility records,
we can calculate the stay duration at each stay place. For
example, User A spends the most time at night at Place 1,
while he/she stays at Place 4 for a long time at daytime.

B. BUILDING MOBILITY GRAPHS
Human mobility involves moving to and from a set of places,
such as comings and goings between any two places. As a
kind of visualizer, graph provides a fairly succinct way to an-
alyze the relationship between objects in nature [32]. Users’
transition among multiple places can be depicted through a
weighted undirected graph, which is called mobility graph.

From one user’s consecutive mobility records, how he/she
moves among different places is known. If comings or goings
happen between two places of pi and pi+1, the two places are
connected by an arc, and the value of the arc is the number of
the comings and goings between pi and pi+1. In this way, the
mobility graph is built for each user sample. In each mobility
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graph, a stay place corresponds to a node v, and an edge
e between node v to node u is established if there exists
transition, with the corresponding transition times being the
weight w of the edge. The degree d of a stay place v is the
number of edges incident to v.

We also took User A as an example to show the mobility
graph, shown in Fig. 5. Each node represents a stay place, the
node size means the average stay duration at the stay place,
and the numbers in the figure represent the ID of each stay
place. The width of edge connecting two stay places indicates
the weight of the edge, e.g. the number of the comings and
goings. There are 95 stay places in total on User A’s mobility
graph. From Fig. 5, it can be seen there are very few places
with big size and more places with smaller size, indicating
User A visits many places but stays for a short duration. The
size of Place 71 and Place 14 is much bigger than that of
others, which means User A usually spends a great amount
of time at the two places. There are not any isolated places,
and each place is connected with the other places by edges. In
particular, there are lots of edges directly connected to Place
71, indicating User A visits Place 71 frequently. The edge
between Place 71 and Place 66 and the edge between Place
71 and Place 14 are much wider than other edges, implying
User A frequently moves among these places. Considering
the long stay duration and the high visit frequency, it could
be inferred that Place 71 is important for User A.

VI. DISCOVERING LIFE STYLE ABOUT MOBILITY
In the real world, individuals display significant regularity on
their movement, and they usually return to a few highly fre-
quented locations [18]. The locations involved in the regular
movements form an "area". Imagine a typical day in one’s
daily life, she leaves home for the work office at 8 am, and
stays in the work office until 12 pm. Then she goes outside for
lunch in a frequently visited restaurant near her workplace.
After lunch she comes back to the work office and stays there
until 5pm. At last, she leaves for home. The places of home,
work office, and the launch restaurant are frequently visited,
and the route repeats almost every workday. These places
form a "living area", in which the user transfers frequently
among the places for residence, food and work. Similarly,
some places compose other areas, such as "business area".
Most of the time we travel only over short distances, between
home and work, whereas occasionally we take longer trips
[18], such as business trip in a different city, and the places
around the accommodation that are visited form a "business
area".

In our daily life, individuals conduct different activities
(e.g. living and traveling) in different areas according to
their needs. The areas are defined as activity areas, which
consist of multiple places and users frequently move among
the places for specific needs. Thus, activity areas indicate the
types of activities, and reflect one user’s need to a certain
degree. For example, the number of one user’s activity areas
reflect how many kinds of activities he/she conducts in daily
life. The transition among different places in each activity

area shows the activeness in mobility. We try to detect one
user’s activity areas in the daily life to understand the related
life style.

A. DETECTING ACTIVITY AREAS
Intuitively, people move frequently among the stay places in
the same activity area while rarely in different activity areas.
It indicates that there is a higher density of edges within
activity areas than between them on the mobility graph.
Similarly, the weight of the edges among the places within
activity areas is much bigger. The activity area can be seen
as a community of nodes in the mobility graph, in which
there is a higher density and bigger weight of edges. Thus,
the problem of activity area discovery can be addressed by
community detection on a graph.

When it comes to community detection, there exist a lot
of algorithms [33]–[36]. Here, the algorithm in [37] was
employed, which uses edge betweenness as a metric to find
the boundaries of communities. The extra information con-
tained in the edge weights does indeed help us enormously
to discern the community structure [38]. This algorithm uses
the modularity Q as the metric to measure the result of
community detection, which is defined as Equation 1. Higher
values ofQ correspond to better divisions of a mobility graph
into communities. In practice, it is found that a value above
0.3 is a good indicator of significant community structure.

Q =
1

2m

∑
vw

[Avw −
kvkw
2m

]δ(cv, cw) (1)

where v and w are the vertices of the mobility graph, m
is the number of edges, kv and kw are the degree of vertex
v and w, respectively. The probability of an edge existing
between vertices v and w if connections are made at random
but respecting vertex degrees is kvKw/2m. cv and cw are
the communities which v and w belong to, respectively. The
δ(i, j) is 1 if i = j and 0 otherwise. Avw is an element of the
adjacency matrix of the mobility graph.

A set of activity areas of the user ui can be denoted by
Cui

. If there are n activity areas for ui, Cui
can be defined

by: Cui = {c1, c2, · · · ci, · · · , cn}, where ci = {}represents
for an activity area.

1) Results of activity areas detection
By applying the algorithm [37], we discovered users’ activity
areas from their mobility graphs. For one user’s activity
areas, we focus on three aspects: the total number of the
activity areas, the size of each activity area, and the number of
visits to each activity area. An activity area’s size refers to the
number of the stay places in it. The number of visits means
the number of days on which the activity area is visited. Here,
we take the union of the days on which the stay places are
visited, as the visit days of one activity area.

We also took User A’s activity areas as an example, and
Q = 0.37, shown in Fig. 6. There are 7 different activity
areas in total, with 7 different colorful background. Each
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FIGURE 6: User A’s activity areas discovered from his/her
mobility graph.
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FIGURE 7: (a) The number of users’ activity areas. (b) The
number of places in activity areas. (c) The number of visits
of activity areas.

node represents a stay place, and an edge represents the
comings and goings between two stay places. The node size
means the number of days on which the corresponding stay
place is visited. Each stay place belongs to one activity area,
and there is no overlap between any two different activity
areas. It’s obvious that the nodes are tightly connected in the
same one activity area, while there are a few edges between
two different activity areas. It indicates that User A moves
frequently among the places in the same activity areas, while
he/she moves rarely between the two places in two different
activity areas.

Among the 7 activity areas, activity area 2 and 4 have
the most stay places in them, both of which have 28 places,
respectively. The activity area 1 has the fewest places, and
there are only 3 places. There exists higher density of edges in
activity area 2 and 4, which means User A moves frequently
in the two activity areas. Activity area 2 is visited the most
frequently, whose number of visits is 172 and the size of most
nodes is relatively big. The activity area 1 is visited for only
once. It is worth noting that the activity area 1 is the only one
that is isolated from the others. It may be because the activity
area is occasionally visited by the User A, e.g. a business area
or travel area.
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FIGURE 8: The mobility activeness and diversity of users.
a) the mobility activeness, b) the mobility diversity.

For the 746 user samples, there are 5,100 activity areas in
total. There are differences in activity areas across users, and
we investigated the number of activity areas, the size, and the
number of visits, shown in 7. Fig. 7(a) shows the frequency of
user samples in term of the number of activity areas. It can be
seen that, there are 98 users with 4 activity areas, accounting
for 13%. Most users have 3 to 8 activity areas, accounting for
62%, and only a few users have more than 20 activity areas.

Figure 7(b) shows the frequency of activity areas in term of
the number of stay places. As we can see, the activity areas
with 3 stay places are the most, accounting for about 30%.
Around 3% of the activity areas consist of two stay places,
and about 7.5% consist of more than 20 stay places. Fig.
7(c) shows the number of visits of the activity areas. About
70% of the activity areas are visited in less than 10 days. The
activity areas visited in less than 90 days account for 85%,
and 7% of the activity areas are visited in 180 days, which
means these activity areas are the most frequently visited.

B. LIFE STYLE DISCOVERED FROM ACTIVITY AREAS
As mentioned above, the activity areas can reflect users’
mobility style. For example, the weight of the edges between
any two nodes in one activity area manifest the transitions
between the two stay places, indicating how frequently the
user moves among multiple stay places. The number of visits
to one activity area implies how important it is to the user.
Here, we define two metrics from the users’ activity areas to
measure their mobility, activeness and diversity, respectively.

1) Mobility activeness
In the real world, some people prefer to stay in the same
place and rarely visit the other places, while some regularly
visit a few fixed places almost every day and move frequently
among them. And some often visit some new places every a
few days because of various of needs. Intuitively, the latter
ones are more active. In order to measure how active in
mobility one user is, we introduce the indicator of activeness.
We use one’s average transitions between different places
every day to measure his/her activeness. The activeness of
one user ui can be denoted by:

Aui =
1

n

n∑
k=1

Trik (2)

where Trik means the transitions of ui on the kth day,
computed by summing the weight of all the edges in and
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between all of the activity areas.
We investigated the mobility activeness of users, shown in

Fig. 8(a). It can be seen that about 70% of users’ activeness
mainly lies in the range from 2 to 4, and very few users’
activeness is higher than 6, accounting for 6%. It indicates
most users transfer 2 to 4 times among multiple places
every day, while few users transfer over 6 times. Many users
transfer twice every day, accounting for 30%. According
to our observation, the users with two transitions usually
transfer from the stay place p1 to p2, and then come back
to p1 (p1 → p2 → p1).

2) Mobility diversity
In the daily life, individuals conduct different activities (e.g.
live and travel) in different areas [18]. The variety of activity
areas implies people’s diversity in mobility. According to our
observation, the users have at least one significant activity
area, which is for individual living, such as residence and
work. Intuitively, these activity areas are not so helpful to
show the mobility diversity. On the contrary, the other activity
areas used for other activities, such as travel, entertainment,
and shopping, are useful to measure the diversity. Thus, we
used the number of the insignificant activity areas to measure
one user’s diversity in mobility. The number of visits to each
activity area can reflect the importance of the activity area to
users. As we can see from Fig. 7(c), about 85% of activity
areas are visited in less than 90 days. Here, we defined the
activity areas visited in less than 90 days as insignificant
activity areas.

Users’ diversity in mobility is shown in Fig. 8(b). The
users’ diversity mainly varies from 2 to 7, which means
that 61% of users go to 2 to 7 activity areas for different
activities except for living. About 14% of users’ diversity is
very low (0 and 1), indicating they are used to stay at the
significant places, such as home or workplace, and rarely
visit any other places. On the contrary, the diversity of very
few users, accounting for less than 1% (0.93%), is very high
(higher than 20), indicating the users usually go to many
activity areas for different activities.

VII. DISCOVERING LIFE STYLE ABOUT HOME AND
WORKPLACES
People spend most of their time at a few key locations, such
as home and workplaces. A geographic location where a
person spends a significant amount of time and/or she visits
frequently, is defined as an important place. Examples of
important places include: home, workplace, gym, grocery
store, and a house of worship [14]. Focusing on these
important places is helpful for understanding users’ life style.
Here, we focused on the important places of home and
workplaces. In this section, we show how to identify home
and workplace in people’s lives and discover the related
patterns from anonymous WiFi scan lists.

FIGURE 9: The top 5 important places of User A.

A. IDENTIFYING HOME AND WORKPLACES
We identified home and workplaces from top important stay
places rather than all of the stay places, so as to improve com-
putation efficiency. Our approach for identifying home and
workplaces consists of two steps. We first detected important
places from all of the stay places, and represented each
important place as a vector with 24 dimensions, indicating
the average stay duration at the important place at each hour
slot. Secondly, we temporally clustered the important places
and then identified which clusters are home or workplaces.

1) Important places detection and representation
In order to identify home and workplaces, it is necessary to
first detect important places from all of the places. In the
real world, one important place is visited frequently by users,
and usually taken as a hub for connecting other places. After
mapping users’ movements to mobility graphs, we can iden-
tify the important places by detecting the important nodes
on the mobility graphs. The importance of nodes on a graph
is mainly evaluated by the connection between its adjacent
nodes [39], such as degree of node, shortest paths and weight.
We exploited the degree of one node and betweenness to
measure its importance. Degree of one node is the number
of edges directly connected to it, and the betweenness is the
number of shortest paths from all vertices to all others that
pass through the node [40]. One place’s degree is higher,
and it is visited more frequently. One place’s betweenness
is bigger, and the probability as a hub for connecting other
places is higher. The importance Ipi of the stay place pi was
computed by:

Ipi
= 0.5× degreepi

+ 0.5× betweennesspi
(3)

For each user sample, we selected the top 5 important
places and there are 3,730 important places in total. In order
to cluster important places for identifying home and work-
places, it is necessary to represent them. Intuitively, people
stay at different places in different time periods. For example,
people spend most time of night at home, and tend to spend
most of day time at workplaces on weekdays. That is to say,
there is a close relationship between the type of the place
and the time periods when one user spends lots of time at
the place. Thus, we represented each important place as a
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(a) Cluster A (b) Cluster B (c) Cluster C (d) Cluster D (e) Cluster E

FIGURE 10: An illustration of the clustering results, 5 types of places.

vector of 24 dimensions, each of which is the average stay
duration in the corresponding time slot. The stay duration
was obtained by comparing two neighbor mobility records.

Taking User A as an example, we illustrated the top
5 important places and showed the average stay duration
(minutes) in each place in Fig. 9. As we can see, User A
spends most time at Place 4 at night (from 7pm to 7am), while
he/she spends very little time here at daytime (from 8am to
6pm). On the contrary, User A spends most time at Place 3
at daytime (from 9am to 5pm), and spends very little time
at this place at night and early morning (from 5pm to 7am).
Place 4 is most likely User A’s home, where he/she spends
a significant account of time at night, and Place 3 may be
his/her workplace since he/she stays here for lots of time at
daytime. Similar with Place 3, the stay duration of both Place
1 and Place 2 mainly covers day time (from 9am to 5pm).
But, the stay duration is a little shorter than that of Place 4.
For Place 0, User A stays here mainly from 8pm to 11pm,
and the average stay duration is short.

2) Clustering important places
We exploited the method of k-means to cluster the 3,730
important places to identify home and workplaces. In order
to well characterize an important place, given that the value
of each dimension among users varies in a wide range,
each value is brought into the range [0,1] by unity-based

normalization: v′i =
vi −min(vi)

max(vi)−min(vi)
. Cosine similarity

was used to measure the similarity between any two places,
and we obtained 5 clusters for which the cosine distance
between the points in the same cluster was the smallest
while the cosine distance between the points in different
clusters was the biggest. There are 707, 844, 1187, 370,
and 622 stay places in each cluster, respectively. To well
understand the clustering results, for each cluster, we chose
30 places to analyze which are the nearest to the centroid.
In each subfigure, we drew 30 curves for the 30 selected
places, and the value of each point on the curve represents
for the normalized stay duration at the specific hour at the
place, shown in Fig. 10. The color at the specific hours is
darker, and the stay places are visited more frequently at the
corresponding hours.

For Cluster C, users visit these places around noon. Maybe
the stay places are some restaurants where people have lunch.
The stay places in Cluster D are usually visited around 6pm.
These stay places may be grocery stores, and people may go

to stores to buy some groceries or food. The stay places in the
Cluster E may be some places of recreation for entertainment,
such as bars and theaters, which are usually visited after
dinner time, at around 8pm. For Cluster A, users spend a
long duration (almost 60 minutes in each hour slot) at the
stay places from 9pm to 6am. Intuitively, people tend to stay
at home at evening and night. It was also found that people
usually stay at home from 7pm to 7am [14]. Thus, it can be
inferred the stay places in Cluster A are home. For Cluster
B, users spend a long duration at the stay places from 9am
to 6pm. In the real world, people usually go to work during
these hours [14]. Thus, the stay places in Cluster B can be
taken as workplaces.

There are 707 home places and 844 workplaces for the
746 user samples. According to our observation, we cannot
discover any home places for 59 users. This may be brought
about by the missing data, for example, some users may turn
off the WiFi subsystem or even shut down their phones after
they go to bed. On the contrary, we found two home places
for 20 users. For each of them, the stay place where the user
spends the most time from 9pm to 6am was selected as the
unique home place. For 35 user samples, their workplaces
cannot be identified, while we discovered more than one
workplaces for 106 users. Similarly, we took the stay place
where the users spend the most time from 9am to 6pm as the
unique workplace. In this way, one user has one home place
and workplace at most. There are 687 home places and 711
workplaces in total.

B. LIFE STYLE ANALYSIS ABOUT HOME
Intuitively, home is very important to people, since they
spend a great amount of time at home almost every day.
Understanding individual patterns at home is crucial to un-
derstand users, such as how much time in average one stays
at home every day, how regularly he/she stays at home, and
how often he/she stays out at night.

1) Average stay duration at home
In the real-world, users spend different amount of time at
home. For each user, we computed his/her average stay
duration at home, formulated by:

E(H) =
1

n

n∑
i=1

hi (4)

where hi means one’s stay duration (hours) at home at ith
day, n is the number of days on which the user stays at home.
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FIGURE 11: a) Users’ average stay duration (hours) at home
every day; b) Users’ regularity in hours of staying at home;
c) Users’ activeness at night.

Fig. 11(a) shows the users’ average stay duration at home
every day. It can be seen that most users stay at home for
about 8 to 14 hours every day in average, accounting for
72%. Some users stay at home for less than 6 hours every
day (1.7%), who may work extra hours at workplaces, and
leave for home late. On the contrary, some stay at home for
over 20 hours, accounting for 5.8%, who may work at home,
and rarely visit other places.

2) Regularity in stay duration at home
Some users stay at home for a long time on some days, while
they spend a very short time at home on some other days.
Here, we used the standard deviationD(H) to measure one’s
regularity in hours of staying at home, formulated by

D(H) =
√
E(H2)− (E(H))2 (5)

Fig. 11(b) shows users’ regularity in hours of staying at
home. Most users’ difference in hours of staying at home is
from 2 to 6 hours, accounting for 81.7%.

3) Activeness at night
According to our observation, some users stay at home
overnight while some visit other places at night. The number
of the places visited in the evening or at late night reflect
users’ activeness at night. We took the average number of
places visited by one user from 7pm to 0am as his/her
activeness at night. For each user, we extracted the places
he/she visits from 7pm to 0am every day based on his/her
mobility graph. Fig. 11(c) shows the users’ activeness at
night. As shown, most users’ activeness at night is from 1
to 2, accounting for 82%. It means most users visit 1 or 2
places in average at night. 12% of users visit only one stay
place at night, and this place is their home. Few users visit
more than 2 places at night, accounting for 5%. Only one
user visits more than 3 places in average.
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FIGURE 12: a) Users’ average stay duration (hours) at their
workplaces on weekdays; b) Users’ average working hours
on weekends; c) Users’ regularity in stay duration (hours) at
workplaces.

C. LIFE STYLE ANALYSIS ABOUT WORKPLACES
Workplace is also very important in our daily life. We try
to understand individual patterns about workplaces in terms
of how many hours users usually stay at their workplaces
on weekdays and weekends, respectively, and how regularly
users stay at the workplaces.

1) Working hours on weekdays
We first investigated the working hours on weekdays. It
was assumed that the hours of one user staying at his/her
workplace are his/her working hours. We took the time slots
from 9am to 6pm as working time. For each user, his/her
average stay duration at workplace on weekdays E(W )
was computed by E(W ) = 1

n

∑n
i=1 wi, where wi is one’s

stay duration at his/her workplace on the ith day, and n is
the total number of workdays on which he/she visits the
workplace. Fig. 12(a) shows users’ average stay duration at
their workplaces on weekdays. Most users spend 4 to 7 hours
in average at their workplaces on weekdays, accounting for
about 70%. According to our observations, these users stay
at their stay places during the time periods from 10am-12pm,
and 1pm-6pm. 13.6% of users spend less than 2 hours in
average at their workplaces every day. These users usually
move frequently among multiple places, and stay not so long
at the discovered workplaces. 6% of users spend over 8 hours
at their workplaces, who tend to stay at the workplaces from
9am to 6pm and rarely visit any other places.

2) Working hours on weekends
Generally, people go to their workplaces on weekdays.
Sometimes, people need to work extra hours on weekends.
Similarly, we investigated each user’s average stay duration
at workplace on weekends E(W ∗): E(W ∗) = 1

n

∑n
i=1 w

∗
i ,

where n is the number of the weekends, and w∗i means each
user’s average stay duration at their workplaces on the ith
weekend. Fig. 12(b) shows users’ average working hours on
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weekends. Lots of users stay at workplaces for 1 to 3 hours
on weekends, accounting for 76%. About 15% of users don’t
visit their workplaces on weekends. Only 1% of users spend
over 5 hours at their workplaces on weekends.

3) Regularity in stay duration at workplaces
We also explored the regularity in hours of staying at the
workplaces on weekdays. It was measured by the standard
deviationD(W ) of the stay duration at workplaces:D(W ) =√
E(W 2)− (E(W ))2. Fig. 12(c) shows the distribution of

all users’ regularity at workplaces. Most users’ difference in
hours of staying at workplaces is 2 hours, accounting for
65%. Comparing with users’ regularity in stay duration at
home shown in Fig. 11(b), we found that users’ stay duration
at workplaces is more regular.

VIII. CONCLUSION
WiFi scan list can roughly indicate the physical location of
the phone in a certain time period. One’s life style can be
inferred from his/her WiFi scan lists, since there is a close
relationship between location and our daily life. Consider-
ing the concern of user privacy issues, we explored WiFi
scan lists that are anonymized, to discover one’s life style
about his/her mobility and the important places of home and
workplaces. We first extracted stay places from anonymized
WiFi scan lists for each user, and reconstructed the mobility
trajectories by building mobility graphs. Based on the mobil-
ity graph, we then detected users’ activity areas through the
idea of community detection, and measured users’ mobility
by two metrics of activeness and diversity. We also learned
the life style about the identified home and workplaces for
users, such as how many hours in average one stays at home,
activeness of going outside at night, and average working
hours on weekdays and weekends. Although the WiFi scan
lists are anonymized, the experiments conducted on the large-
scale dataset of 17,000 users from over 150 countries showed
that we can still discover the users’ life style.

We emphasize, however, that due to the absence of ground
truth, all our conclusions are, at best, educated guess which
are based on real-world data. We believe such results are
meaningful and insightful for a wide range of people such
as smart service providers, and advertisers. In the future
work, we will make our efforts to collect more individual
information to verify our results and discover more insights.
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