AppUsage2Vec: Modeling Smartphone App Usage
for Prediction

Sha Zhao!, Zhiling Luo', Ziwen Jiang!, Haiyan Wang!, Feng Xu', Shijian Li', Jianwei Yin!, Gang Pan?!

IDepartment of Computer Science, Zhejiang University, Hangzhou, China
2State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
{szhao, luozhiling, zjujzw, whyan, fxuzju, shijianli, zjuyjw, gpan} @zju.edu.cn

Abstract—App usage prediction, i.e. which apps will be used
next, is very useful for smartphone system optimization, such
as operating system resource management, battery energy con-
sumption optimization, and user experience improvement as well.
However, it is still challenging to achieve usage prediction of high
accuracy. In this paper, we propose a novel framework for app
usage prediction, called AppUsage2Vec, inspired by Doc2Vec. It
models app usage records by considering the contribution of
different apps, user personalized characteristics, and temporal
context. We measure the contribution of each app to the target
app by introducing an app-attention mechanism. The user
personalized characteristics in app usage are learned by a module
of dual-DNN. Furthermore, we encode the top-k supervised
information in loss function for training the model to predict
the app most likely to be used next. The AppUsage2Vec was
evaluated on a dataset of 10,360 users and 46,434,380 records
in three months. The results demonstrate the state-of-the-art
performance.

Index Terms—Smartphone applications, app usage prediction,
user modeling

I. INTRODUCTION

With the increasing prevalence of smartphones, the mobile
application market has seen explosive growth in recent years,
with Apple’s app store having more than 2 million applications
and Google’s Android market also having above 3.8 million
applications as of the first quarter of 2018 '. Applications
(Abbr. apps) on smartphones can be considered as entries to ac-
cess everyday life services such as communication, shopping,
navigation, and entertainment. Users can easily download and
install apps on their smartphones to facilitate their daily lives.
As reported in [1], the average number of apps installed on
a user’s smartphone is around 56, and for some users, it is
up to 150. Given the large number of installed apps and the
limited screen size of smartphones, it is often tedious for users
to search for the apps they want to use. In addition, for some
apps such as the news apps it takes a while to download the
latest content after they are turned on [2]. It is becoming quite
an important issue that how to help users quickly find the apps
they need and reduce the app load time. One effective way is
to predict which apps will be used before one user actually
needs them.

Predicting the next apps most likely to be used is very useful
for smartphone system optimization, such as operating system

Uhttps://www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/

resource management, battery energy consumption optimiza-
tion, and user experience improvement. First, smartphones can
pre-load apps into the memory for faster execution and remedy
the launch delay by predicting the apps likely to be used in
the near future. The apps that are running in the background
but will not be used in the near future could be released, so
that resources are allocated so as to optimize responsiveness
subject to the finite resources available. Second, with the
knowledge of the next app most likely to be used, the battery
energy consumption can be planned in advance and optimized
to improve energy efficiency. Generally, different apps drain
battery energy at diverse speeds. For example, watching videos
on smartphones drains the smartphone battery energy at a
much faster speed. According to the predicted apps, the battery
energy consumption can be planned to conserve the battery
life of smartphones. Third, app usage prediction benefits the
user experience improvement. Its immediate applications are
in designing fast app launching Uls. In Example 1, we can use
the recently used apps of ‘eBay-WhatsApp-eBay’ to predict
PayPal, and then present the icon of PayPal on the main screen
or highlight it, which can make it easier for the user to find
the app he/she is likely to use next.

Example 1: One app usage record of Tom is: ‘eBay-
WhatsApp-eBay-PayPal’. Tom is using ‘eBay’ for online shop-
ping. Unexpectedly, he/she receives a message in WhatsApp.
He/she checks the message and then returns to eBay and con-
tinues to shopping. After shopping, he/she pays with PayPal.

There have been several studies on app usage prediction [3]—
[8]. For example, Liao er al. [3] proposed a temporal-based
model to predict the next app, achieving a recall of 80% at top
5 apps for 15 users. Huang et al. [6] predicted 38 users’ app
usage and achieved an accuracy of 69% at top 5 apps. Shin et
al. [4] collected a wide range of contextual information and
made personalized app prediction for 23 users, achieving an
accuracy of 78% at top 5 apps. Natarajan et al. [5] modeled
app usage sequences and achieved a recall of 67% at top 5
apps on a dataset of over 17,000 users.

Many approaches have been proposed to predict the next
app. However, most existing approaches have some limita-
tions. First, they treated the apps in a given historical sequence
equally, and all the apps had the same contribution for the tar-
get app. Actually, app usage prediction can hardly be equally
dependent on the used apps in a given sequence, especially

in the scenarios of drop-in apps. Drop-in apps refer to the
apps are happening by chance when users are intentionally
using other apps to serve a specific need, such as the drop-in
WhatsApp in Example 1. Intuitively, the drop-in apps are of
less significance to the target app. The existing approaches,
like Markov chain and RNN (Recurrent Neural Network), can
well model the app usage patterns in time sequence, such
as eBay and PayPal being usually used together. However,
it is difficult for them to capture users’ intention in app usage
especially when drop-in apps happen, and detect which app is
more important for the target app.

Second, most existing approaches have not taken user
personalized characteristics in app usage into account, such
as one’s preferences to each app and app usage patterns. An
individual and apps are related to each other, since he/she uses
apps depending on his/her preferences and needs [9]. Some
approaches, such as Bayesian framework, assume users and
apps to be independent from each other in terms of impacting
a user’s choice of next app [2]. Last but not least, a model
for app usage prediction is required to be with a light-weight
computational cost, since the goal of app usage prediction is
to improve the user experience. In other words, the model can
not only perform well for app usage prediction but also be a
light-weight implementation.

In this paper, to address the problems mentioned above,
we propose a novel framework for app usage prediction, Ap-
pUsage2Vec, inspired by the idea of Doc2Vec [10]. Our model
is evaluated on a large scale dataset of 10,360 users in a time
period of three months, and the results show its effectiveness
and stability. The execution time of AppUsage2Vec in both
prediction and training phase is investigated and compared
with other approaches, showing that it is light-weight for app
usage prediction and can be allocated to run on a client device.
We train a generic (i.e. user-independent) model and individual
models, respectively. The generic model performs much better
than individual ones, so that it can provide potentially better
prediction performance to address the cold-start problem,
especially when each user’s training data size is very small.
The contributions of our paper are two-fold.

(1) We propose a novel framework for app usage prediction,
called AppUsage2Vec, and propose a top k£ based loss
function for optimization of training. It is validated by a
large-scale real-world dataset and achieves the state-of-
the-art performance.

(2) AppUsage2Vec embeds three types of features and com-
bines them together for the prediction task: 1) app atten-
tion; 2) user personalized characteristics in app usage; and
3) temporal context of app usage.

II. RELATED WORK

In recent years, a number of studies have attempted to
predict the next app that will be used on smartphones by
applying machine learning algorithms. [1], [3]-[8], [11]-[19].
The studies predicted the next app by modeling app usage
sequences and exploiting contextual information. This section
will review the related work in app usage prediction.

Considering that the consecutive apps are dependent upon
their immediate previous apps in the app usage sequence,
it is often assumed that Markov property stands that the
next app is only related to the latest app. The studies in
[11, [5], [6], [11] therefore proposed to model the app usage
sequences by using Markov models, both by a single hidden
Markov model [1], [5], [6] and a mixture of Markov models
[11]. As an example, Huang et al. [6] predicted 38 users’
app usage by building up a first-order Markov model to
learn the probabilities of switching any two apps in an app
transition matrix, and achieved the prediction accuracy of 69%
at top 5 apps. It was found, the correlation between any two
apps in app usage sequence has a strong contribution to the
prediction accuracy. Natarajan et al. [5] modeled the app usage
sequences using a cluster-level Markov model, which segments
app usage behaviors across multiple users into a number of
clusters. The Markov model was trained on the collective data
for each group of user to model the group-level app usage
characteristics, and achieved a recall of 67% at top 5 apps on
a dataset of over 17,000 users.

Liao er al. [1] learned the app usage features covering
both app transitions and duration with the Markov properties.
They built a temporal app usage graph for each user, in
which the node and directed edge represented an app and a
transition. The app usage features of app transition matrix were
learned in the training phase of the Markov model. Then, the
optimal combination of the next app and other features, such as
duration, was jointly estimated in the prediction phase. Finally,
kNN (k Nearest Neighbors) classification model was adopted
to predict app usage, and achieved a recall of 80% at top 5
apps for 50 users. Parate er al. [11] proposed a variant of the
Predicting Matching algorithm by making a combination of
Markov models of different orders for app usage prediction,
and achieved an accuracy of 81% at top 5 apps for 34
users. Although Markov models learn the correlation among
sequentially used apps, they assumed the next app is only
related to the latest app and ignored the multiple apps in the
previous time steps.

In addition to Markov models, a Bayesian framework has
been popularly applied to predict the app usage in many stud-
ies. It was mentioned that merely considering the dependencies
between the app usage behaviors was not enough to make
the accurate prediction of the next app because of the high
dependency of app usage on contexts, such as time, loca-
tion, and phone status (e.g., battery level, screen brightness)
[20], [21]. Many studies combined various features for app
usage prediction by using Bayesian methods. Among [4], [6],
[15], [22], the Bayesian framework was used for app usage
prediction by combining app usage history and contexts in a
unified manner. For example, Huang et al. [6] predicted the
user’s app usage by using a Bayesian framework in combining
various features, such as location, phone status (e.g., silent
mode), and app usage features. The study suggested that three
types of features can be combined using a Bayesian model,
which estimated the probability of the next-app candidates by
multiplying the posterior probabilities computed using each

feature. The Bayesian model achieved an accuracy of 69% for
top 5 candidate apps.

Shin et al. [4] collected a wide range of contextual informa-
tion in a smartphone, and made personalized app prediction
based on a naive Bayes model for 23 users, achieving an
accuracy of 78% at top 5 apps. Zou et al. [14] proposed
Bayesian methods to predict the next app based on the app
usage history, and achieved an accuracy of 86% at top 5 apps.
Baeza et al. [7] combined app session features with contextual
features in a parallelized Tree Augmented Naive Bayes to
predict the next app for 38 users. The app session features were
extracted from app usage records by using Word2Vec [23]-
[25], which learned distributed representations of app sessions
by considering the sequential relationships existing among app
actions. Bayesian models combine app usage features and
contextual features for app usage prediction, but, the features
used are assumed to be independent from each other for the
prediction task. Actually, the app usage is closely related to
contextual information, such as time.

Apart from Markov and Bayesian models, Do et al. [13] also
compared a few other models to predict the next app, such
as linear regression, logistic regression, and random forest.
Xu et al. [15] proposed a two-phase classification model to
predict the app usage patterns. The two-phase model included
a personalized classification phase, which aimed to group
users with similar app usage patterns, and a community-aware
prediction phase, which aimed to predict the next app. In the
classification phase, the apps were classified in terms of the
app bag, which was a set of the contextual features of using
each app. The model was evaluated on a dataset of 4600 users,
achieving an accuracy of 67% for top 5 candidate apps.

To summarize, there have been many studies to predict
the next app most likely to be used. However, most of the
above studies are limited by evaluating prediction models for
relatively small populations, such as 23 users [4], 38 users
[6] and 52 users [12]. A few studies were evaluated for
relatively large populations [5], [15], however, the prediction
performance was lower than 70%. Xu et al. [15] predicted
4606 users’ next app and achieved an accuracy of 67% at top
5 apps. Natarajan et al. [5] achieved a recall of 67% at top
5 apps on a dataset of over 17,000 users. Furthermore, they
did not consider the contribution of different apps to the target
app, and neglected users’ personalized characteristics in app
usage, degrading the prediction performance.

III. PROBLEM DESCRIPTION

Apps on smartphones are used in time order. We treat a
series of apps used in a certain period as a sequence. Apps
are often used in conjunction with other relevant apps to serve
one need. For example, if a user launches the ‘contacts’ app,
the next app is likely to be the ‘mail’ or the ‘message’ app. The
app that a smartphone user will use next intuitively depends
on the sequence of recently used apps [5]. As also reported
by Huang [6], the correlation between sequentially used apps
has a strong contribution to the accuracy of app prediction.
In this paper, we try to predict the app one user most likely

to use next based on his/her n most recently used apps. In
Example 1, one app sequence of Tom is - ‘eBay-WhatsApp-
eBay-PayPal’. Taking this sequence as an example, we use the
first three apps of ‘eBay-WhatsApp-eBay’ to predict the last
app, PayPal, from all his/her installed apps.

Definition 1 (App Usage Prediction): Given a set of apps
A and an observed sequence consisting of n most recently
used apps (a'_,,ar ., 1,--.,a;_;), where each app a € A,
user u € U, predict the next app a; from A that the user u
most likely to use.

Formally, we need to estimate the conditional probability:

Pr(-lay_,, a1y y_q,u) (D

where a¥_, means the (r — i)-th app of the user u, ordered
from the latest to the oldest.

Each app will be with a probability that reflects how likely
it will be used next. We consider the app with the highest
probability as the one most likely to be used next. It is
straightforward to transform into a fop k prediction problem
by sorting apps according to the estimated probability scores.

There are some important factors for app usage prediction.
First, the app most likely to be used next intuitively depends on
the sequence of apps used recently [5]. The recently used apps
are treated as atomic units and independent with each other in
some methods, such as naive Bayes. However, the correlation
between sequentially used apps has a strong contribution to the
prediction accuracy [6], since apps are usually used together
for the same task. Thus, the apps in a sequence should be
combined together for app prediction, rather than treated inde-
pendently. Second, users play an important role for app usage
prediction. Users use apps depending on their preferences and
needs. Taking such personalized characteristics in app usage
into consideration is helpful for prediction. But, none of the
existing models has explored user personalized characteristics
for app usage prediction.

In order to make both app sequences and users contribute
to the prediction task, we reduce Doc2Vec [10] to the problem
of app usage prediction. Doc2Vec predicts the next word by
exploring a paragraph and a word sequence in a given context
in the paragraph. Specifically, every word is mapped to a
unique vector, as well as each paragraph. Word vectors are
averaged, concatenated, or summed as a feature vector that is
concatenated with the paragraph vector for predicting the next
word.

Taking the analogy to word and document modeling, we
can treat each user as a document and each app as a word,
to predict the app most likely to be used next. However, the
Doc2Vec model has some limitations in app usage prediction.

1) Each app in a given sequence is treated equally to the
target app. In the original Doc2Vec model, each word
vector in a given sequence is treated equally and has the
same contribution to the target word. Actually, the apps
in a sequence have the different contribution for the target
app, especially when drop-in apps happen. Intuitively, the
drop-in apps, like the WhatsApp in Example 1, contribute

less than other apps in the sequence. Thus, it is required
to detect which app is more important for the target app.

2) User personalized characteristics in app usage are de-
scribed in a simple way. In the original model, the user
vector is simply mapped to a linear distributed vector,
which cannot well encode users’ app usage patterns.

3) App vectors and the user vector are combined by simple
concatenation. In Doc2Vec model, word vectors and
the paragraph vector is simply concatenated, making
them independent from each other. One user and used
apps are related to each other, since the user uses apps
depending on his/her needs and preferences. The simple
concatenation can not reflect users’ preferences to each
app.

4) Temporal context is not considered. App usage is highly
dependent on the time periods in one day [3]. App
usage behaviors on smartphones have been shown to
exhibit specific temporal pattern [26]-[28]. For example,
SMS and Phone are shown to have an evenly distributed
pattern, whereas apps like news or weather apps are
used more frequently in morning hours. However, the
original Doc2Vec model does not take temporal context
into account.

IV. ApPPUSAGE2VEC

We propose a novel framework named as AppUsage2Vec
for app usage prediction, which is inspired by the approach
of Doc2Vec [10]. We start by introducing an overview of the
framework, and then discuss how to overcome the limitations
mentioned above in detail.

A. Overview

In AppUsage2Vec, every user u is mapped into a unique
distributed vector v,,, represented by a row in matrix U and
every app a is also mapped into a unique distributed vector
Vg, represented by a row in matrix A. One user vector and n
app vectors that are most recently used by the user are taken
as input for predicting the next app. The sequence is of fixed-
length with n apps and sampled from a sliding window over
the user’s app usage records. The user vector is shared across
all sequences generated from the same user but not across
users. The app vector matrix A, however, is shared across
users, i.e., the vector for the app of ‘WeChat’ is the same for
all users.

In order to overcome the limitations mentioned above, we
add three components, including an app-attention mechanism,
dual-DNN (Deep Neural Network), and temporal context.
More specifically, we introduce an app-attention mechanism
to measure the contribution of different apps for the target
app. It decides which app we should pay attention to. It is
straightforward that the app paid to more attention contributes
more to the target app. By adopting the app-attention mech-
anism, a sequence vector is built for prediction, which is
the weighted sum of the app vectors with different attention
weight. Sequentially, we design a dual-DNN model to learn
user personalized characteristics in app usage behaviors, so

' PayPal

PayPal

a4 | App

Softmax

RHAD
Combination Vector Hidden
Dual DNN

ebay eBay

i wl WhatsApp €by eBay ™ Tom

Fig. 1: Illustration of AppUsage2Vec Model.

that user vector and sequence vector are represented by auto-
matically integrated deep features that can explicitly encode
app usage patterns. In order to represent one’s preferences to
each app, we employ Hadamard product on the user and app
sequence vectors. Finally, considering the high dependency of
app usage on temporal context, time features of app usage is
added to the model for the prediction task. Taking Example
1, we show the overview of AppUsage2Vec in Fig. 1.

More formally, given one user u and a sequence of n
ordered apps (ay_,,,ay ', q,---,ar_ 1), the objective of the
AppUsage2Vec model in the training procedure is to maximize
the cross entropy

D]
1
D Z Pr(atlay_,,,....;ar_i,u)log Pr(at|ay_,,, ...

'7ag—17u)

2
where D is the set of all sequences. The prediction task is
typically handled by a multiclass classifier. At prediction time,
we employ softmax as activation, and we have

ey&
doiev

Each of y; is un-normalized probability for each predicted
output app a, computed as

Yy = WTh(UaL

Pr(alay_,,ay_ 15ty u) =

3)

Vy) “4)

where W is the parameter of softmax. h(ve:_ — ,vy) is
combination vector, i.e., the concatenation of the sequence
vector vge and the user vector v,. The sequence
vector vai‘,n;,l is a weighted sum of all n app vectors
{og _sve e Ve)

The softmax function outputs the probability distribution
over all candidate apps. The app that has the highest probabil-
ity is considered as the one that most likely to be used next.
The top k apps are selected by sorting apps according to the
computed probability scores in a descending order.

In AppUsage2Vec, the app and user vectors are initialized
randomly at the beginning and embedded with the same
dimensionality. Both of them are trained using stochastic gra-
dient descent and the gradient is obtained via backpropagation.

-1

Sequence Vector

Weighted Sum

X1 Uaz/ \Xz Vas
&
\
\

Va,

eb Y eBay

iwl WhatsApp eb Y eBay

Fig. 2: Tllustration of app-attention mechanism.

At every step of stochastic gradient descent, one can sample a
fixed-length sequence from a random user, compute the error
gradient from the network in Fig. 1, and use the gradient to
update app vectors A, user vectors U, and softmax parameter
W in the model.

B. App-Attention Mechanism: Measuring the Contribution of
Each App

In the original Doc2Vec model, each app in a sequence
is treated equally. It is a simple assumption that apps in the
context are equally relevant to the target app. The app vectors
are averaged to build the sequence vector vo»_ , shown in

Eq. (5).)
1
Uu:{—n:r—l = E Z Va,_;

i=1

®)

Actually, app usage prediction can hardly be equally de-
pendent on all apps in the sequence. Apps have the different
contribution to the target app. In the scenarios of drop-in apps,
the drop-in apps are intuitively less of significance to the
target app. In Example 1, Tom is interrupted by the message
of WhatsApp when he is intentionally shopping with eBay.
eBay is usually used together with PayPal for online shopping.
Intuitively, eBay is more important than the drop-in WhatsApp
for predicting PayPal. Thus, we should pay more attention to
eBay rather than WhatsApp for the prediction of PayPal. It
is worth noting that the oldest eBay is more important than
WhatsApp, even it is earlier used than WhatsApp. It suggests
that the contribution of each app is not completely dependent
on its time order. It is necessary to capture users’ intention
in app usage and detect which app is more important for the
prediction task.

In order to measure the contribution of each app to the
target app, we introduce an app-attention mechanism. App-
attention learns which app to attend to based on the sequence
and what it has produced so far [29]. In particular, the order
of each app in the sequence is also considered. The attention
mechanism computes the weight of each app in the sequence
for the target app, which makes each app have the different
contribution. One app with a higher weight should be paid to
more attention for the prediction task. The weights of all app

vectors are summed to 1. With the app-attention mechanism,
the sequence vector is built by a weighted summation of all the
app vectors instead of an average operation used in the original
model. By letting the model have an attention mechanism,
we can infer users’ intention from app usage sequences and
further recognize which app is more important for the goal.
With Example 2, the app-attention mechanism is illustrated in
Fig. 2. It is worth noting that, even for the same app of ‘eBay’,
the first and the third one are with different attention weights,
due to their different time orders in the sequence. WhatsApp
has the smallest weight for PayPal, although it is used later
than the oldest eBay.

Example 2: The distributed vectors of the apps {‘eBay’,
‘WhatsApp’, ‘eBay’} in the sequence, are weighted as {0.3,
0.1, 0.6}, respectively by the app-attention mechanism, for
predicting the target app of ‘PayPal’. Three app vectors have
different contribution to build the sequence vector, and the
latest used eBay has the highest weight.

Formally speaking, consider the app vectors {v, _.|i €
1,..,n} C RY where G, embedding size, denotes the
dimensionality of v,. The app vectors are integrated by a
hidden layer. It involves an affine parameter W, and a bias
parameter b,,, and gets the hidden vector H,, € RE. Then, the
attention probability x is the normalization on H,. With the
help of x, the sequence vector is the weighted sum of all the
app vectors. The process is illustrated by Eq. (6). Here, the
superscript AT'T is used to distinguish from the naive average
app vector vgu_ in the original model. The parameters are
summarized as 0 o7 7.

H, = tanh(Wy[va, ., Va,_ 1+ Va,_,) + bo)
[Ho |1

n
= E XiVa,_;
=1

C. Dual-DNN: Learning User Personalized Characteristics

X
(6)

ATT
,Ua’gf'n.:'rf 1

As mentioned above, users play an important role for app
usage prediction. Users have different preferences to each app
[30]. Taking such personalized characteristics in app usage
into consideration is helpful for prediction. However, in the
original Doc2Vec model, user vector is simply mapped to a
linear distributed vector, which cannot well learn personalized
characteristics in app usage. In order to overcome this limi-
tation, in our AppUsage2Vec model, we design a dual-DNN
module to learn user personalized characteristics in app usage
sequence, shown in Fig. 3. More specifically, it consists of
two parallel DNNs, one used on the user vector and another
on the sequence vector. The user and app sequence will be
represented by automatically integrated deep features that can
explicitly encode app usage patterns.

Each DNN [31] is with fully connected layers with G neural
cells and activated by tanh. The superscript a and u are used
to mark the DNN for the app sequence and DNN for the
user, respectively. A layer indicator ¢ is marked as superscript,
ordered from the shallow layer to the deep layer. For the layer

User Vector

Sequence Vector

Fig. 3: Module of dual-DNN with Hadamard product.

Z%%, the i-th layer at DNN for the app sequence, an affine
parameter W? and a bias b®? are introduced. Note that all
Z have the same dimensionality as v, i.e., Z € RE. The
parameters of dual-DNN for the apps and user are summarized
as 0%, N and 0% - respectively. Eq. (7) and Eq. (8) show
how the user vector and sequence vector can be learned by
dual-DNN.

A tanh(W;’lvng;T?l +b™1),

Z%% = tanh(W3* 2" + b*?),

)
VBN = tanh(Wph Ze b 4 b,
Z"" = tanh(W o™ 4 b 1),
Z%? = tanh(W 2 Z"" 4 b*?), ®)

pDNN — tcmh(W;’LZ“’L_1 + b k).

A good combination of users and apps can be used as a
predictive feature for the target app. However, in the original
Doc2Vec model, the sequence and user vector are combined
by simple concatenation. It is formally described as:

h(vge

r—n:r—1’

vy) = (Vg V] &)

r—nir—1’

where [-] represents the concatenation operation on vectors.

The simple concatenation operation makes the sequence
vector and user vector independent with each other for predict-
ing the next app. Actually, the user and sequence of apps are
closely related to each other, since one user determines what
apps to use usually depending on his/her needs. Moreover,
users have different preferences to apps, and the apps in the
given sequence have different contribution to the target app.
Hadamard product is a point-wise multiplication. Employing
Hadamard product on the user and app sequence vectors
can not only build the close relationship between users and
apps, but also represent users’ preferences to each app for the
prediction task. In AppUsage2Vec, we build the combination
vector of the user and sequence vector by Hadamard product,
as shown in Eq. (10).

Vy) = vDNN

Arnir—1

DNN

hHAD(®Uu

’Uau,

r—nir—1"7

(10)

where © is Hadamard product. h 4P refers to the combina-
tion vector obtained by Hadamard product.

D. Temporal Context

A smartphone user uses apps depending on his/her context.
The most common and widely used contextual information
is time [2]. App usage behaviors on smartphones have been
shown to exhibit specific temporal pattern [26], [27], [32].
It was also mentioned in [3] that merely considering the
dependencies between apps was not enough to make accu-
rate prediction of the next app simply because of the high
dependency of app usage on the temporal context. However,
the original Doc2Vec model does not take temporal context
into account.

In AppUsage2Vec, we introduce time as a new feature. With
time taken into consideration, our objective is to maximize the
following conditional probability,

Pr(ay|ay_ ., ap i1y Gy, u, Tar_Ta . 7;7:71)
(1)
where 7, represents the start timestamp of using the app a.
We propose two policies to use time features. First, we take
account of the time difference At of each app and the latest
used app in the sequence, considering that the latest used app
is an important predictor for the next app [4], [6]. Specifically,
the time difference in minutes of the ¢-th app and the latest
used app is calculated by At; = Tyu_ — Ty . The input app
vector is updated by appending one dimension that describes
At, as shown in Eq. (12). By doing this, the time difference
can be considered in the app-attention mechanism to compute

the sequence vector.

u ..
r—n41’

Ug = [UaaAa] (12)

Another policy to utilize time features is to take the
timestamp of the latest used app as the current time for the
prediction. More specifically, we encode the time into a one-
hot time vector T of 31 dimensions, in which one of 24
dimensions with value of 1 indicates the hour in one day, and
one of 7 dimensions with value of 1 indicates the day in one
week. The current time can be combined together with the
user and sequence vector to the combination vector. In other
words, the combination vector is updated by appending the
time vector 7', shown in Eq. (13).

h = [RHAD T (13)

E. Top k Based Training

In order to train the AppUsage2Vec model, we need to
estimate the parameters, including W in softmax, @77
in the app-attention mechanism, 6%,y and 0%y, in
dual-DNN. The parameters can be summarized as © =
(W,0417,0% v N, 0% Ny). The objective function of the
model in the training phase is the negative cross entropy on

conditional probability of the target app with respect to an
observed app sequence, as shown in Eq. (14).

D]
. 1
arg min D] Z Pav 10g Pau (14)
r—n
where
b= PT’(~|CL$’_”, ag—n—&-lv ey Gy 1, U, 771}‘77”7:1;1,&17 - 7:1}“‘,1)
(15)

With training the parameters, we can obtain top %k apps by
sorting the probability computed by softmax in Eq. (3). Obvi-
ously, it is already a good prediction if the target app is one of
the top k£ apps when k£ is small. However, the optimization of
the objective function still continues to improve the probability
Dax, and even cause over-fitting. Motivated by this idea, we
adjust the objective function by introducing hinge loss [33] on
top k. Formally, it is described as

D]

1 1(pau >P))
E a ren Pau_, logpau
r=—n

arg min ———
& S]

(16)
D]

where 1(-) is the indicator function and py; denotes the
k-th largest value of p, and « is discount coefficient. In
this procedure, gradient descent is employed to optimize the
objective function shown in Eq. (16).

V. EXPERIMENTS

In this section, we conducted extensive experiments to show
the effectiveness of AppUsage2Vec. We first described the
dataset used in the experiments.

A. Experiment Setup

1) Dataset: We tested AppUsage2Vec with a large-scale
real-world dataset of app usage log provided by a mobile
Internet company, containing 10,360 smartphones from Zhe-
jiang province, China, and spans three months from Aug. 23th,
2017 to Nov. 23th, 2017. There are 46,434,380 records in
total with each one consisting of identification (ID) of each
smartphone (anonymized), the start timestamp, and the user-
agent field of the client. The privacy issues of the dataset
are carefully considered. The dataset does not contain any
personally identifiable information, where the “user ID” has
been anonymized and does not contain any user metadata.
All the researchers are regulated by the strict non-disclosure
agreement and the dataset is located in a secure off-line
server. To use the dataset for evaluation, we performed a pre-
processing work:

o Extracting app usage records. From the dataset, we
inferred app identity according to the name of user
agent of the client by utilizing a systematic framework:
SAMPLES [34]. We also performed some minor manual
modifications. For example, for those user agents with
different versions but for the same app, we merged their
names. This method enabled us to accurately label most
of the apps found in our dataset. We also manually
verified its accuracy and checked the inferred apps. With

app identity, we extracted app usage records, each of
which consisting of smartphone ID, start timestamp, and
app identity. 9,373 unique apps were inferred in total.
Each user uses 27.65 unique apps in average in the three
months.

o Merging the consecutive usage records of the same app
in one minute. There are cases that an app is used
multiple times in a short time period. In this case, the
repeated app sessions of the same app are likely to be
usage independent from other apps. We de-duplicated the
repeated app records from the same app by merging its
consecutive records in every one minute.

o Segmenting the app usage records into a series of app
usage sequences. Two app usage records were grouped
into the same sequence if the time gap between them
is equal to or less than 7 minutes. According to our
observation, for 74.79% of the records, the time interval
between two consecutive records is less than 7 minutes.
For the sequences with 3 or more apps, the average
number of apps in each sequence is 8.35, the average
duration is 10.17 minutes, and per user has 315.46
sequences in average during the three months.

e Filtering. We focused on users who used apps more
frequently. 1,621 users were removed, whose number of
sequences in the three months is smaller than 50. We also
focused on apps that were used more frequently and we
selected the top 2000 most frequently used apps.

Overall, there were 8,739 users and 2000 frequently used
apps used for experiments. The data of the first two months
from Aug. 23 to Oct. 23, 2017 was used for training, and that
of the last month was used for testing.

2) Performance measurement: We used the criterion of re-
call to measure the performance of AppUsage2Vec. The recall
was computed when top k& apps with the highest probability
were selected, namely Recall@Fk. Recall@k was computed by
Eq. (17) [1], [35]. Bigger value means better performance.
We tested Recall@1, Recall@2, Recall@3, Recall@4, and
Recall@5 in the following experiments. Our model was im-
plemented in python with keras.

rDTeSt
2 (e, > ppy)

RecallQk = DTes|

a7)

3) Compared approaches: We selected the following al-
gorithms to compare. We tested the traditional methods of
MRU (Most Recently Used) and MFU (Most Frequently
Used). We investigated the methods of Naive Bayes, Markov
chain, and HMM (Hidden Markov Model), and DNN. In order
to compare with baseline methods, we tested the methods
of Doc2Vec and Word2Vec. Moreover, we investigated the
performance of RNN-attention, which is popular in solving
time sequence problems, and applied the attention mechanism
on RNN.

(1) MRU refers to the app that was the most recently used
by each user [4];

850% o —@——0—O——¢—¢—&
80.0%
X 750% B R
TN e

esov
60.0%
55.0%

Window Size n

(a) Window size

85.0%
80.0% W

« 75.0% — a8 — %8

@70 0% ././

©

$65.0%
60.0%

55.0% ._4._././4———40—0

10 50 100 150 200 400 600
Embedding Size G

(b) Embedding size

$hits,

Fig. 4: Prediction performance with varying (a) window size and (b) embedding size.

(2) MFU refers to the app that was the most frequently used
by each user [4];

(3) Naive Bayes takes the apps in a sequence as features and
learns their independent contribution to the target app [14];

(4) Markov chain estimates the joint probability of app
sequence and the target app under the Markov chain rule
[13];

(5) HMM [19] forms a Markov chain with hidden states
that are mapped to the observed app, and the probability
distribution of the observed app depends on the hidden
states.

(6) Word2Vec [23] embeds apps as vectors, and averages the
app vectors to predict the next app;

(7) Doc2Vec [10] embeds apps and a user as vectors, and
concatenates the averaged app vectors with the user vector
to predict the next app;
DNN [31] stacks fully-connected neural layers to learn
nonlinear, hidden and implicit features from an app se-
quence, and then applies logistic regression with softmax
activation for classification.
RNN:-attention [36] represents app sequences by neu-
rons with recurrent connections, keeps memory about the
history in the hidden layers, and then applies attention
mechanism to measure the weight of the hidden layer at
each time step for the target app. The softmax activation
is applied on the weighted summation of the hidden states
and connected to a fully-connected layer to estimate the
probability distribution of the next app.

®)

€))

B. Results and Analysis

1) Performance study w.r.t window size and embedding
size.: We first investigated the performance of AppUsage2Vec
with varying window size n and embedding size GG, shown in
Fig. 4. Window size n refers to the number of apps input
for predicting the next app, and embedding size G refers to
the dimensionality of the user vector and app vector. In our
experiments, the user and app vectors were represented in
the same dimensionality. We also investigated the execution
time of AppUsage2Vec with varying window size and em-
bedding size, shown in Fig. 5, to make a tradeoff between
the performance and execution time when setting the window
size and embedding size. Here, execution time refers to the
average running time of each test sample for a specific window
size and embedding size, which is calculated by dividing the
total running time by the number of all the test samples. The

0.5e-4

Hit-
Hit-

Execution Time@!
s o
PO
®
IS

0.3e-4

10 50 100 150 200 400 600
Embedding Size G

(b) Embedding size
Fig. 5: Execution time with varying (a) window size and (b)
embedding size.

3 4

5 6 7 8 9
Window Size n

(a) Window size

accuracy and execution time were both the average values in
5 runs with the same experiment setting.

As shown in Fig. 4(a), we tested Recall@k (k=1,2,3,4,5), by
varying window size from 3 to 9. It can be seen that, Recall@1
increases when window size varied from 3 to 6, suggesting
adding recently used apps can bring more historical informa-
tion for the prediction task to improve the performance. But
some results slightly decrease when window size varied from 8
to 9. It is probably because inputting more apps for prediction
increase the difficulty in fitting the model. When we used
more apps to predict the target apps, there are relatively few
sample sequences for training to fit the model. For example,
there are much fewer training sample sequences (2,407,331
vs. 6,721,261) when inputting 9 apps than that of inputting
3 apps to predict. In addition, inputting more apps makes
the computation complexity of the model higher, which also
probably makes it difficult to fit the model.

The model achieves the best Recall@1 of 55.45% when
the window size is 6. Recall@2, Recall@3, Recall@4, and
Recall@5 increase relatively quickly when window size varies
from 3 to 4, slowly when the window size varies from 4 to 6.
The Recall@2 and Recall@3 are the best when window size
is 6, and the Recall@4 and Recall@5 are the best when the
window size is 5. It is found that there is a slight difference
between recall when the window size varies from 4 to 6.
It shows that a longer list of previously used apps does not
necessarily provide more useful information than a shorter list
in terms of predicting the next app, which coincides with the
conclusion in [11].

The execution time of AppUsage2Vec with varying window
size is shown in Fig. 5(a). As we can see, the execution
time grows linearly with respect to the window size. For
each window size, the execution time for £k = 1,2,3,4,5
is almost the same. We made a tradeoff between prediction
performance and computational efficiency, and set the window
size to be 4 in the following experiments. 7,998,707 sampled

sequences were used in total for the experiments, each of
which has 5 apps, since we used 4 apps to predict the next
app. 5,354,847 sequence samples were used for training, and
the left 2,643,860 for the test. For the 8739 users, each user
has around 909 sampled sequences in average.

We tested Recall@k with varying the embedding size of
the user vector and app vector (10, 50, 100, 150, 200, 400,
and 600) when window size was 4, shown in Fig. 4(b). As we
can see, Recall@k (k = 2, 3,4, 5) increases relatively quickly
when the embedding size varies from 10 to 200, and increases
slowly from 200 to 600. Recall@1 increases relatively slowly
when the embedding size varies from 10 to 100, and from 200
to 600, while it increases relatively quickly from 100 to 200.
Fig. 5(b) shows the execution time of AppUsage2Vec with
varying embedding size. It can be seen that the execution time
grows relatively slowly when the embedding size varies from
10 to 200, while grows dramatically from 200 to 600. We made
a tradeoff between the performance and execution time, and
set the embedding size to 200 in the following experiments.

2) Comparison with other approaches: We compared
AppUsage2Vec with other approaches, shown in Tab. 1. All
of the approaches used four apps to predict the next app. In
practice, we tuned different parameters for each approach to
achieve the best performance. MRU and MFU were computed
based on each sampled sequence. In a sampled sequence of
four apps, MRU took the latest used app as the result, and
MFU took the most frequently used app of the four apps as
the result. If all of the four apps were used once, the result
of MFU was the same as that of MRU. We built a Markov
chain, an HMM with four hidden states, and developed a DNN
with two hidden layers for prediction. RNN-attention applied
an attention mechanism to learn the weight of the hidden state
at each time step, and a softmax activation was applied on the
weighted summation of the hidden states and connected to a
fully-connected layer to estimate the probability distribution
of the next app. For Word2Vec, Doc2Vec, DNN, and RNN-
attention, each input app was represented as a vector of 200
dimensions, and the top £ based loss function we proposed in
Eq. (16) was applied. We also considered the features of user
and time in the models of naive Bayes, Markov chain, HMM,
DNN, and RNN-attention. For example, for DNN and RNN-
attention, we concatenated the user vector, app vector and time
vector together for input. When implementing AppUsage2Vec,
we set the discount coefficient « in the top k based loss
function to be 0.1, and designed the dual-DNN module with
2 layers.

As shown in Tab. I, AppUsage2vec performs best in Re-
call@1, Recall@2, Recall @3, Recall@4, and Recall@5. There
is a significant improvement of our model, especially in
Recall@1. With respect to Recall@1, AppUsage2vec achieves
a substantial improvement, making it around 47% higher than
naive Bayes, 28% than MRU, 29% than MFU, 22% than
Markov chain, 15.5% than Word2Vec, 15% than Doc2Vec,
12% than DNN, 6% than HMM, and 3% than RNN-attention.
The difference in Recall@k between AppUsage2Vec and other

TABLE I: Performance comparison with other approaches.

Method
MRU
MFU

Naive Bayes

Recall@1
26.70%
25.50%

7.88%
32.55%
39.38%
39.91%
42.86%
48.81%
51.26%
54.83%

Recall @2
41.15%
45.58%
15.61%
55.00%
62.81%
64.54%
66.36%
61.04%
68.99%
69.06%

Recall @3
56.08%
60.27%
22.28%
65.62%
72.51%
73.23%
74.43%
66.26%
76.43%
77.63%

Recall @4
62.37%
62.37%
28.18%
72.52%
78.39%
79.00%
78.79%
72.24%
80.38%
81.78%

Recall @5

33.54%
77.05%
81.66%
82.76%
83.86%
76.16%
83.36%
84.47%

Markov chain
Word2Vec
Doc2Vec

DNN

HMM
RNN-attention
AppUsage2Vec

approaches becomes smaller as k increases. Naive Bayes
performs worst, which treats each feature used independently
with each other for the target app. The result suggests that the
correlation among features used is important for predicting the
next app.

HMM achieves a much better Recall@1 (48.81% v.s.
32.55%) than Markov chain that assumes the next app is only
related to the latest used app. HMM breaks the assumption
and introduces hidden states which are the mixture of apps.
However, it considers the contribution of the input apps in
a given sequence to be the same for the target app, and
performs worse than AppUsage2Vec (48.81% vs. 54.83%).
Our model performs much better in Recall@1 (54.83% v.s.
42.86%) than DNN. Although the neural network integrates
deep features to encode app usage patterns, DNN makes each
input app in a sequence contribute equally for the predic-
tion task. We also found AppUsage2Vec have a significant
performance improvement compared to the original Doc2Vec
and Word2Vec models, especially in Recall@1 (54.83% vs.
39.91% vs. 39.38%), suggesting the importance of measuring
the contribution of each app, learning user personalized char-
acteristics, and introducing temporal context.

AppUsage2Vec performs around 3.6% higher than RNN-
attention in Recall@1, 1.2% higher in Recall@k (k =
3,4,5). RNN-attention gives very close Recall@2 with Ap-
pUsage2Vec, but AppUsage2Vec performs always slightly bet-
ter than RNN-attention. Although RNN-attention models the
sequential correlation among apps and measures the weight of
the apps in a given sequence, it is not good at modeling users
from their app usage behaviors. Our AppUsage2Vec learns the
user personalized characteristics in app usage behaviors by
introducing dual-DNN which models the app usage behaviors
of each user through the deep neural network, and learns one
user’s preferences to different apps through Hadamard product
on the user and the app sequence vector.

Although the improvements in Recall@k are not so substan-
tial, we found that AppUsage2Vec holds a distinct advantage
over RNN-attention in execution time for the prediction. RNN-
attention takes approximately twice the execution time of
AppUsage2Vec for app usage prediction, as shown in Fig. 6.
Here, the execution time refers to the average running time
of each test sample where four apps were used to predict
the next app. It was calculated by dividing the total running
time by the number of all the test samples, and averaged
in 5 runs with the same experiment setting. In addition, the

10E-5
KX DNN

[ZZ] AppUsage2Vec

EZ2 RNN-attention

8E-5

6E-5

ExecutionTime@K(s)

2E-5

0!

Fig. 6: Execution time comparison among DNN, RNN-
attention and AppUsage2Vec.

TABLE II: Effectiveness of different components.

Baseline Recall@] 39.91%
Baseline+Temporal context | Recall @1 43.39%
Improvement 3.48%
Baseline+Attention Recall @1 47.36%
Improvement 7.45%
Baseline+dual DNN Recall @1 44.25%
Improvement 4.34%
Ours Recall @1 54.83%
Improvement 14.92%

training time of AppUsage2Vec is around 5 minutes shorter
than RNN-attention (601.90 vs. 908.28 seconds) over all the
training samples in the same computation environment. The
light-weight implementation, especially the execution time for
prediction, is required and very important, since the goal of
app usage prediction is to enhance user experience. DNN takes
the shortest time for prediction and training (454.49 seconds),
but its performance was the worst, 9% lower than RNN-
attention and 12% lower than AppUsage2Vec in Recall@]1.
Thus, AppUsage2Vec, not only with the best performance but
also light-weight, is preferred for app usage prediction, which
can be allocated to run on a client device.

3) Effectiveness of different components: We investigated
the effectiveness of the components to performance, including
temporal context, app-attention mechanism, and dual-DNN. To
be specific, we took Doc2Vec as a baseline model, in which
the 4 input app vectors were averaged and then concatenated
with the user vector. We added temporal context, app-attention
mechanism, and dual-DNN to the baseline model, and then
compared the Recall@k with the baseline model, respectively.
We took Recall@1 to illustrate the effectiveness of the three
components shown in Tab. II, since AppUsage2Vec improves
the most in Recall@1 when compared to the Doc2Vec model.
In Tab. II, ‘Ours’ means AppUsage2Vec, the model combining
together the temporal context, app-attention mechanism and
dual-DNN. As we can see from Tab. II:

1) Temporal context: Compared to the baseline model,
adding temporal context gets Recall@1 3.48% higher. It
further validates the importance of time in predicting the
next app.

2) App-attention mechanism: The app-attention mechanism
makes the prediction performance around 7.45% higher
in Recall@1. Among the three components, the app-
attention mechanism is the most effective one to improve
performance. It shows the substantial effect of the app-

10

Example 1 @- S |

T=-Th

UCBrowser Wechat NeteaseNews Meituan Alipay
&,
Example 2 P . mis A S
QQMusic UCBrowser QQMusic Alipay QQMusic

Fig. 7: Two examples of app attention.

attention mechanism in app usage prediction. It can
capture the users’ intention in using apps, and detect
which app is important for predicting the next app. The
model can still perform well especially in the scenarios
when there are some drop-in apps, which are interrupting
the app usage patterns.

Dual-DNN: The component of dual-DNN contributes
4.34% performance gain. The dual-DNN learns user per-
sonalized characteristics in app usage. The improvement
shows the importance of the user personalized character-
istics in predicting next app, including app usage patterns
and one’s preferences to each app.

The combination of the three components: Compared to
the baseline model, ours improves significantly, 14.92%
higher in Recall@1. By combining the three components,
our model comprehensively considers the factors of time,
the contribution of different apps for the target app, and
users’ personalized characteristics in app usage.

3)

4)

4) Result illustration of app-attention mechanism: In
order to better understand the nature of the app-attention
mechanism, we inspected two examples from the results,
where the attention weight of each app was learned by the app-
attention mechanism. In each example, 4 apps were used to
predict the next app. In the first example, the user sequentially
used the apps of UC browser, WeChat (a popular IM app in
China), NeteaseNews, and Meituan (a Chinese Groupon app
for locally found consumer products and retail services), which
were used for predicting the next app. By the app-attention
mechanism, their attention weight is 0.02, 0.01, 0.36, and 0.61,
respectively. Meituan is with the highest weight, while WeChat
has the lowest weight. It is reasonable, because we checked the
usage record and found the next used app is Alipay (an online
payment). The user probably used Meituan for online group
buying, and then used Alipay for payment. As we expect, the
model paid the most attention to Meituan and took it as the
most important hint for the target app.

In the second example, QQMusic that was thirdly used
has the highest attention weight for the target app. The user
likely listened to music via QQMusic (used firstly), then used
UCBrowser (used secondly) for searching the song, and got
back to QQMusic (used thirdly) to continue to listen to the
music. Maybe he/she was interested in the song, he/she went to
Alipay (used last) to purchase the song, and then continued to
use QQMusic (ground truth) to listen to music. Notably, even
for the same app of QQMusic, they have different attention
weight, due to different orders in the sequence.

100.0%
EXA Individual
Generic

63.84%

80.0%
60.0% 51.33%

40.0% 1 22

Recall@K

20.0%

0.0%

(a) For the users with 200 sequence samples in average

Recall@K

100.0%
EXA Individual

x

80.0%

60.0%

40.0%

20.0%

llnHnne

0.0%

(b) For the users with 4000 sequence samples in average

Fig. 8: Performance comparison between individual model and generic model.

90.0%

80.0%

70.0%

R ER

Recall@K
a B WN =

60.0%

S nisanaas
Zaigmnanss

50.0%

40.0%
1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Proportion of training data
Fig. 9: Performance with partial data for training.

5) Performance on different amounts of training data:
We also investigated the performance of our model trained
by different amounts of training data (1%, 5%, 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, and 90%), shown in Fig. 9.
Training data 10%, for example, means we randomly selected
10% of the app sequences from the whole dataset as the
training data to predict all users’ app usage in the last month
from Oct. 23 to Nov. 23. It means, we just varied training data
size, but kept the testing data as before. The random selection
of the training data was carried out 5 times independently.

As we can see from Fig. 9, AppUsage2Vec still performs
well when only 1% and 5% of training dataset are used for
training, and achieves Recall@1 of 48.66% and 50.63%, and
Recall@5 of 73.22% and 79.78%, respectively. The perfor-
mance increases quickly when from 1% to 10% training data
were used. There is a slight difference in performance when
from 10% to 90% training data was used. It can be inferred that
our model performs stably with varying amounts of training
data, even for small training data.

6) Generic model to address cold-start problem: This ex-
periment was designed to show the effectiveness of our model
for solving the cold-start problem. The cold-start problem can
be characterized by a prediction model that has difficulty in
accurately predicting due to a lack of a sufficient amount of
data. Most of the existing models in previous studies, such
as MRU, MFU, Naive Bayes and Markov chain, were trained
using an individual’s data, i.e. individual models. However,
training an individual model often encounters the cold-start
problem, especially at the beginning of data collection for an
individual. A generic model that is trained using all available
users’ data, can provide potentially better prediction perfor-
mance when the data is not sufficient. AppUsage2Vec can be
trained as not only an individual model, but also a generic
model. We examined how the generic model can address the

11

cold-start problem for individual users.

We trained a generic model and individual models, and
compared the performance of them. To be specific, the generic
model was trained using the data from Aug. 23 to Oct. 23
of all the 8,739 users. Individual models were trained using
very small data of each user that has relatively few sequences
in the three months. We randomly selected 100 users who
have around 200 sampled sequences in the three months. Each
sampled sequence has 5 apps, since we used 4 apps to predict
the next app. The 100 users have 196.07 sampled sequences
in average (in the whole dataset, each user has around 909
sampled sequences in average). Each individual model was
trained using each individual’s data from Aug. 23 to Oct. 23,
and there were 100 individual models in total. Both individual
models and the generic model were tested using the 200 users’
data in the last month from Oct. 23 to Nov. 23, 2017. For
the generic and individual models, Recall@k was the average
value of the 100 users, shown in Fig. 8(a). For comparison,
we selected the top 100 users who has the most sequence
samples (3951.96 in average), trained their individual models
in the same way, and compared the performance between the
individual model and generic model, shown in Fig. 8(b).

As shown in Fig. 8(a), the generic model performs much
better against individual models. To be specific, for Recall@1,
Recall@2, Recall@3, Recall@4, and Recall@5, generic model
performed around 12%, 18%, 14%, 10%, and 8% higher than
individual models, respectively. This suggested that the generic
model trained using all available users’ data models can
significantly help address the cold-start problem for individual
users and enhance performance, especially at the beginning
of data collection. As we expect, the performance of the
individual model increases when much more training data
is used, shown in Fig. 8(b). But, the generic model still
outperforms the individual models, indicating the superiority
of the generic model. The differences between the individual
and generic model greatly increase as the training data size
becomes smaller. It further suggests the generic model can
help solve the cold-start problem when there is not sufficient
data to train individual models.

VI. CONCLUSIONS

In this work, we have predicted the next app most likely to
be used based on the most recently used apps, by proposing a
novel framework, AppUsage2Vec, inspired by Doc2Vec. Com-

pared to Doc2Vec, we introduced an app-attention mechanism
to measure the contribution of each app to the target app,
designed a module of dual-DNN to learn user personalized
characteristics, and took temporal context into consideration.
Furthermore, we proposed a top-k based loss function for
training. Extensive experiments were conducted on a real-
world dataset of 10,360 users in three months for evaluation.
We investigated the performance of our model when it was an
individual model. The generic model performed much better
than individual models, especially when each individual’s
training data was very small, which can provide potentially
better performance to solve the cold-start problem. The results
showed that AppUsage2Vec is light-weight for app usage pre-
diction, which can be allocated to run on a client device. The
results demonstrate the state-of-the-art performance, achieving
recall of 54.83% and 84.47% for top-1 and top-5, respectively.

AppUsage2Vec can not only predict the next app that most
likely to be used next, but also learn user and app representa-
tions. The user and app representations are interesting because
the learned vectors explicitly encode many app usage patterns.
They might be extended for other application scenarios, for
example, app categorization, and discovery of user groups with
similar usage patterns. It could be used to facilitate the efficient
marketing of products and services.

ACKNOWLEDGMENT

This work was supported by NSF of China (No. 61802342,
61772460, and 61802340), China Postdoctoral Science Foun-
dation (No. 2017M620246 and 2018T110591), and Funda-
mental Research Funds for the Central Universities. Dr. Shijian
Li and Dr. Gang Pan are the corresponding authors.

REFERENCES

Z.-X. Liao, S.-C. Li, W.-C. Peng, S. Y. Philip, and T.-C. Liu, “On the
feature discovery for app usage prediction in smartphones,” in /CDM
2013. 1IEEE, 2013, pp. 1127-1132.

H. Cao and M. Lin, “Mining smartphone data for app usage prediction
and recommendations: A survey,” Pervasive and Mobile Computing, pp.
1-22, 2017.

Z.-X. Liao, Y.-C. Pan, W.-C. Peng, and P.-R. Lei, “On mining mobile
apps usage behavior for predicting apps usage in smartphones,” in CIKM
2013. ACM, 2013, pp. 609-618.

C. Shin, J.-H. Hong, and A. K. Dey, “Understanding and prediction of
mobile application usage for smart phones,” in UbiComp 2012. ACM,
2012, pp. 173-182.

N. Natarajan, D. Shin, and I. S. Dhillon, “Which app will you use
next?: collaborative filtering with interactional context,” in RecSys 2013.
ACM, 2013, pp. 201-208.

K. Huang, C. Zhang, X. Ma, and G. Chen, “Predicting mobile appli-
cation usage using contextual information,” in UbiComp 2012. ACM,
2012, pp. 1059-1065.

R. Baeza-Yates, D. Jiang, F. Silvestri, and B. Harrison, “Predicting the
next app that you are going to use,” in WSDM 2015. ACM, pp. 285-
294.

D. Yu, Y. Li, FE. Xu, P. Zhang, and V. Kostakos, “Smartphone app usage
prediction using points of interest,” IMWUT, vol. 1, no. 4, p. 174, 2018.
S. Zhao, G. Pan, Y. Zhao, J. Tao, J. Chen, S. Li, and Z. Wu, “Mining
user attributes using large-scale app lists of smartphones.” IEEE Systems
Journal, vol. 11, no. 1, pp. 315-323, 2017.

Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in ICML2014, 2014, pp. 1188-1196.

A. Parate, M. Bohmer, D. Chu, D. Ganesan, and B. M. Marlin, “Practical
prediction and prefetch for faster access to applications on mobile
phones,” in UbiComp 2013. ACM, 2013, pp. 275-284.

[1]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

(1]

12

[12] C. Sun, J. Zheng, H. Yao, Y. Wang, and D. F. Hsu, “Apprush: Using
dynamic shortcuts to facilitate application launching on mobile devices,”
Procedia Computer Science, vol. 19, pp. 445-452, 2013.

T. M. T. Do and D. Gatica-Perez, “Where and what: Using smartphones
to predict next locations and applications in daily life,” Pervasive and
Mobile Computing, vol. 12, pp. 79-91, 2014.

X. Zou, W. Zhang, S. Li, and G. Pan, “Prophet: What app you wish to
use next,” in UbiComp 2013 poster. ACM, 2013, pp. 167-170.

Y. Xu, M. Lin, H. Lu, G. Cardone, N. Lane, Z. Chen, A. Campbell, and
T. Choudhury, “Preference, context and communities: a multi-faceted
approach to predicting smartphone app usage patterns,” in ISWC 2013.
ACM, 2013, pp. 69-76.

C. Xiang, D. Liu, S. Li, X. Zhu, Y. Li, J. Ren, and L. Liang, “Hinextapp:
A context-aware and adaptive framework for app prediction in mobile
systems,” in 2017 IEEE Trustcom/BigDataSE/ICESS, pp. 776-783.

H. Yin, L. Chen, W. Wang, X. Du, Q. V. H. Nguyen, and X. Zhou,
“Mobi-sage: A sparse additive generative model for mobile app recom-
mendation,” in /CDE 2017. 1EEE, 2017, pp. 75-78.

Y. Wang, N. J. Yuan, Y. Sun, F. Zhang, X. Xie, Q. Liu, and E. Chen,
“A contextual collaborative approach for app usage forecasting,” in
UbiComp 2016. ACM, 2016, pp. 1247-1258.

B. Huai, E. Chen, H. Zhu, H. Xiong, T. Bao, Q. Liu, and J. Tian, “Toward
personalized context recognition for mobile users: A semisupervised
bayesian hmm approach,” TKDD, vol. 9, no. 2, p. 10, 2014.

H. Zhu, E. Chen, H. Xiong, K. Yu, H. Cao, and J. Tian, “Mining mobile
user preferences for personalized context-aware recommendation,” TIST,
vol. 5, no. 4, p. 58, 2015.

H. Cao, T. Bao, Q. Yang, E. Chen, and J. Tian, “An effective approach
for mining mobile user habits,” in CIKM 2010. ACM, pp. 1677-1680.
K. Yu, B. Zhang, H. Zhu, H. Cao, and J. Tian, “Towards personalized
context-aware recommendation by mining context logs through topic
models,” in Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer, 2012, pp. 431-443.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in Neural Information Processing Systems, 2013,
pp. 3111-3119.

Q. Ma, S. Muthukrishnan, and W. Simpson, “App2vec: modeling of
mobile apps and applications,” in ASONAM 2016. 1EEE, pp. 599-606.
V. Radosavljevic, M. Grbovic, N. Djuric, N. Bhamidipati, D. Zhang,
J. Wang, J. Dang, H. Huang, A. Nagarajan, and P. Chen, “Smartphone
app categorization for interest targeting in advertising marketplace,” in
WWW 2016, 2016, pp. 93-94.

C. Jesdabodi and W. Maalej, “Understanding usage states on mobile
devices,” in UbiComp 2015. ACM, 2015, pp. 1221-1225.

Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman,
“Identifying diverse usage behaviors of smartphone apps,” in IMC 2011.
ACM, 2011, pp. 329-344.

S. Zhao, J. Ramos, J. Tao, Z. Jiang, S. Li, Z. Wu, G. Pan, and A. K.
Dey, “Who are the smartphone users?: Identifying user groups with apps
usage behaviors,” GetMobile: Mobile Computing and Communications,
vol. 21, no. 2, pp. 31-34, 2017.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

S. Zhao, F. Xu, Z. Luo, S. Li, and G. Pan, “Demographic attributes
prediction through app usage behaviors on smartphones,” in UbiComp
2018 workshop. ACM, pp. 870-877.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

S. Zhao, J. Ramos, J. Tao, Z. Jiang, S. Li, Z. Wu, G. Pan, and A. K.
Dey, “Discovering different kinds of smartphone users through their
application usage behaviors,” in UbiComp 2016. ACM, pp. 498-509.
M. Lapin, M. Hein, and B. Schiele, “Top-k multiclass svm,” in Advances
in Neural Information Processing Systems, 2015, pp. 325-333.

H. Yao, G. Ranjan, A. Tongaonkar, Y. Liao, and Z. M. Mao, “Samples:
Self adaptive mining of persistent lexical snippets for classifying mobile
application traffic,” in MobiCom 2015. ACM, 2015, pp. 439-451.

H. Cao, D. H. Hu, D. Shen, D. Jiang, J.-T. Sun, E. Chen, and Q. Yang,
“Context-aware query classification,” in SIGIR 2009. ACM, pp. 3-10.
T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh Annual
Conference of the International Speech Communication Association,
2010.

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

