
1

Forecasting Price Trend of Bulk Commodities Leveraging

Cross-domain Open Data Fusion

BINBIN ZHOU and SHA ZHAO, Zhejiang University, China

LONGBIAO CHEN, Xiamen University, China

SHIJIAN LI, ZHAOHUI WU, and GANG PAN, Zhejiang University, China

Forecasting price trend of bulk commodities is important in international trade, not only for markets par-

ticipants to schedule production and marketing plans but also for government administrators to adjust poli-

cies. Previous studies cannot support accurate fine-grained short-term prediction, since they mainly focus

on coarse-grained long-term prediction using historical data. Recently, cross-domain open data provides

possibilities to conduct fine-grained price forecasting, since they can be leveraged to extract various direct

and indirect factors of the price. In this article, we predict the price trend over upcoming days, by leverag-

ing cross-domain open data fusion. More specifically, we formulate the price trend into three classes (rise,

slight-change, and fall), and then we predict the specific class in which the price trend of the future day lies.

We take three factors into consideration: (1) supply factor considering sources providing bulk commodities,

(2) demand factor focusing on vessel transportation with reflection of short time needs, and (3) expectation

factor encompassing indirect features (e.g., air quality) with latent influences. A hybrid classification frame-

work is proposed for the price trend forecasting. Evaluation conducted on nine real-world cross-domain open

datasets shows that our framework can forecast the price trend accurately, outperforming multiple state-of-

the-art baselines.
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1 INTRODUCTION

Bulk commodities play a fundamental part in a country’s economic development, which refer to

raw materials transported in large quantities for production and trade, such as iron ore, coal, and

grain. It is important to forecast prices of bulk commodities accurately, not only for purchasers and

suppliers but also for traders and even government administrators. Purchasers can adjust manu-

facturing plans and purchase bulk commodities in lower prices to maximize profits. Suppliers can

schedule operation and marketing plans to control the supply-demand balance. Traders can pur-

chase these commodities from large-scale overseas suppliers and sell to small-scale domestic com-

panies with urgent demand, taking advantage of a long seaborne delivery time. For government

administrators, normally, they would prefer long-term bulk commodities price forecast to monitor

and adjust their resource policies. They could also consider short-term forecast to micro-adjust the

local resource policies and provide financial assistant for related companies.

However, it is difficult to accurately forecast prices of bulk commodities. Here, we take one

typical and important bulk commodity, iron ore, as an example, to explain the difficulty. Iron

ore is a dry bulk commodity, with the largest trade volume per year [30]. It is commonly used

for steel production as key ingredients, and it is irreplaceable in steel manufacturing due to its

homogeneous characteristic nowadays [22]. Market participants trade iron ore in a spot price

based on a well-acknowledged price index Platts Iron Ore Index (IODEX) [33]. The IODEX pro-

vides meaningful and transparent representation of physical iron ore market. The confirmation

of IODEX relies on market participants’ heuristic bids and offers, resulting in a difficulty in esti-

mation and prediction. Specifically, Platts workers collect various data about bids, offers, expres-

sions of interest to trade, and confirmed trades and then publish the latest data on the Market on

Close (MOC) as the corresponding IODEX price. All these bids, offers, and expressions of interest

would change dynamically and heuristically, and they are also mixed with participants’ psycho-

logical expectations. Hence, the price is affected by various factors. Besides, the fact that it is

not easy to obtain some critical relevant data for the commercial secrets and limited data access,

makes it difficult to forecast the price accurately. In this article, for simplification purposes, we

model the price forecast problem as a classification task, i.e., forecasting the price trend of bulk

commodities.

Existing literature on prices of bulk commodities mainly focuses on long-term price trend fore-

cast, paying less attention to the short-term price trend forecast. Due to the coarse-grained data col-

lected and processed, it is hard to conduct fine-grained short-term analysis and forecast. Moreover,

previous studies on bulk commodities-related analysis mainly rely on economic-specific statistical

data [21, 26, 40]. For bulk commodities, using specific-domain data is insufficient to discover some

latent factors of prices, since the price changing is influenced by various kinds of factors from

different domains. For example, air quality of steel-intensive cities affected by steel production,

reflect latent demand of iron ore and coal, thus bring influences on these price trends.

Although the growing availability of open datasets from various domains provides us an op-

portunity to make short-term price trend forecast for bulk commodities, there still remain two

challenges to forecast the price trend accurately. First, there is limited access of data directly re-

lated to the price trend, due to trade secrets and lack of unified data collection platforms. Second,

combined with the high variety of open data, it is hard to confirm and extract directly representa-

tive factors related to the price trend.

In this article, to address these aforementioned challenges, we attempt to leverage cross-domain

open data to forecast the price trend of bulk commodities over upcoming days. Here, the price trend

is defined as three classes, i.e., rise, slight-change and fall. We first analyze three influential factors,

i.e., supply factor, demand factor, and expectation factor. Then, we identify and select relevant
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features from cross-domain open datasets according to these three factors. After that, we feed

selected features into a hybrid prediction model consisting of multiple classification models, to

achieve a sequential three-class forecast of following T days. Finally, we conduct performance eval-

uation utilizing real-world datasets. Experimental results show that our framework can accurately

predict the price trend in three classes following T business days, outperforming all state-of-the-art

baselines. The main contributions of our article include:

(1) Our work is a promising step towards short-term price trend forecast of bulk commodi-

ties leveraging cross-domain open data fusion. We employ open data both from physi-

cal domains (e.g., vessel trajectory and air quality), and economic-specific domains (e.g.,

seaborne cost and stock price), to conduct a cross-domain study. The results demonstrate

that it is a novel and successful attempt for cross-domain studies utilizing open data.

(2) We propose a three-layer framework for a sequentially continuous T days’ price trend pre-

diction: cross-domain open data layer, feature selection layer, and price trend prediction

layer. In the cross-domain open data layer, we collect all possible and accessible open data

from various domains. In the feature selection layer, we first identify three related key

factors from various cross-domain open data sources: supply factor from port statistical

data, demand factor mainly from port statistical data and trajectory data, and expectation

factor from urban data and economic data. We then select most relevant features from all

combined factors for each prediction time interval. In the price trend prediction layer, we

propose a hybrid model consisting of multiple models to achieve a sequential three-class

prediction.

2 RELATEDWORK

In this section, we review the relevant previous work from two viewpoints. We investigate the

studies forecasting economic indicators, including prices of bulk commodities, and introduce the

existing literature using cross-domain open data.

2.1 Economic Indicators Prediction

There are a number of studies on forecasting various kinds of economic indicators in different sce-

narios, such as iron ore price, stock index in different countries or regions, currency in different

countries and electricity prices. For example, References [8, 49] leveraged historical hourly elec-

tricity prices to predict the next-day price using different methods, respectively. Contreras et al.

[8] employed ARIMA to model moving trends of electricity prices and then predict the future

price. Implementations on mainland Spain and Californian markets verified the effectiveness of

this study. Yadav et al. [49] proposed a hybrid method for accurate electricity price prediction by

employing fuzzy systems in the Standard PSO method and applied the method to the electricity

markets of Spanish to validate its superiority over many baseline methods. Wang [42] studied

the stock price prediction problem with nonlinear neural networks. The author used historical

trade prices to predict future stock price, and experiments on Taiwan Stock Index demonstrated

the proposed method can obtain accurate prediction. These aforementioned studies on economic

indicators prediction usually conduct short-term predictions due to their large amount of fine-

grained historical data, e.g., hourly and daily data. However, it is difficult to conduct short-term

fine-grained prediction of bulk commodities with only historical specific-domain data due to the

coarse-grained bulk commodities data.

Compared with other products, such as electricity prices and stock prices, the short-term price

prediction of bulk commodities has its intrinsic characteristics. First, the trade of bulk commodities
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usually involves international export and import, encompassing complex factors affecting their

prices changing. For example, the different regulatory frameworks in different trade-related coun-

tries would increase the trade complexity of bulk commodities. Second, the data is not dense with

smaller samples. Bulk commodities are usually traded in large quantities with lower frequency,

while other products (e.g., stocks) are usually traded with higher frequency. In this way, relevant

data of bulk commodities are sparser. Thus, the short-term price prediction for bulk commodities

is quite challenging. In the past decades, previous literature on bulk commodities-related studies

usually involved various datasets. For instance, Pustov et al. [34] conducted long-term (more than

5 years) iron ore price prediction study using historical iron ore price data and various factors,

e.g., operating costs, investment return, and demand growth. Zhang et al. [50] investigated the

monthly soybean price prediction using various datasets, including historical monthly soybean

prices, the output of domestic and global soybean, input volume of soybean, domestic demand of

soybean and so on. They employed a quantile regression-radial basis function neural network to

solve this problem, and experiments results verified the advantages of the proposedmethod, which

can accurately predict the soybean prices. Although these bulk commodities related studies have

incorporated some relevant data to improve the price prediction performance, they are unable to

obtain accurate and short-term price prediction, due to the limitation of coarse-grained historical

data. In this article, we attempt to conduct short-term forecast on price trend of bulk commodities

leveraging datasets from various domains.

2.2 Cross-domain Open Data Applications

Recently, there is an increasing trend for applying cross-domain open big data to address perva-

sive challenges, e.g., intelligent transportation planning and optimization [2, 3, 5, 7, 17, 31, 54],

smartphone users profiling and understanding [15, 51–53], and urban environment monitoring

[37, 38, 55]. For instance, Zheng et al. [55] predicted fine-grained air quality readings of moni-

toring stations during the next two days in a real-time manner, by using various datasets from

different domains, e.g., historical air quality data of all cities involved, meteorology data, and

weather prediction data. Chen et al. leveraged various cross-domain urban open data to conduct

bike sharing-related studies. They proposed a semi-supervised framework to learn and rank bike

sharing stations using POIs, Check-in, and demographics data in Reference [5], and predicted

dynamic cluster-based over-demand of bike sharing stations using weather condition, air temper-

ature, social events and traffic events data in Reference [7]. Xiong et al. [16] ranked residential real

estates with the utilization of multiple cross-domain datasets, such as online user reviews (e.g.,

overall satisfaction score and service quality score), and offline moving behaviors (taxi trajectory,

smart card transactions, and check-in data).

However, in the past decades, there were few studies on economic indicators prediction using

cross-domain open data. Fortunately, ubiquitous open data from various domains provide us an

unprecedented opportunity to conduct economic indicators prediction studies leveraging cross-

domain open data fusion. It is not trivial to predict economic indicators using cross-domain data.

Intuitively, we usually apply the supply and demand-related data as factors to influence the eco-

nomic indicator. Nevertheless, it is hard to obtain supply and demand-related data directly. Lever-

aging relevant cross-domain data to help represent latent factors becomes promising and practical.

For example, Chen et al. [4, 6] conducted studies on container port performance measurement and

comparison. They used ship GPS trajectory record, to identify container handling events. They

then used cross-domain data, e.g., ship GPS trajectory and open port facilities data, to estimate

containers number of multiple ports. Therefore, in this article, we explore the possibility to incor-

porate various cross-domain open data to study the short-term price trend forecasting problem.
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Fig. 1. Example: Iron ore price trend from April 2016 to May 2017.

Fig. 2. IODEX return rate when ΔT = 20.

3 PROBLEM DESCRIPTION AND FRAMEWORK OVERVIEW

3.1 Problem Description

The objective of this work is to forecast the price trend of bulk commodities over multiple future

days, by utilizing cross-domain open datasets. Sensing price change in advance can help them

increase profits and schedule plans. Therefore, we formulate the price trend into three classes: rise,

slight-change, and fall. This problem, thus, can be represented as a three-class prediction problem.

Three labels are defined corresponding to the three classes, −1, 0, and 1, where −1 denotes a fall
of the iron ore price, 0 denotes a slight-change of the price, and 1 denotes a rise of the price.

We take iron ore, one typical bulk commodity, as a representative to present the problem formu-

lation. We first collect historical iron ore price index (IODEX price) data to observe its changing

trend. From Figure 1, we observe that the price curve has an obvious changing from April 2016 to

May 2017, with four peaks and two valleys. With these sharp changes, it is not easy to predict the

specific class of future price trend lies in. The most obvious reason may be that the price moves

in violent fluctuation, even in a small-range peak duration or valley duration. Furthermore, fore-

casting future price trend using historical price data, only interprets its economic significance in

a coarse-grained way, without paying attention on surrounding related data from other domains.

Therefore, we use various open data from different domains for this three-class price trend prob-

lem, to forecast whether the price would rise, be in slight-change or fall.
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Fig. 3. Overview of the framework.

We divide the price trend into three classes based on its return rate, which can be computed

in Equation (1). Here, ps and pe are defined as iron ore price values of start time s and end time

e, respectively.ψ (e, s ) is defined as the return rate from s to e . Computation results are presented

in Figure 2(a). We observe that values of the curve are from −0.3 to 0.4, with some inflection

points and some slight-change points. We further discretize them, as shown in Figure 2(b). We

then define three classes using a threshold δ , i.e., the return rate is (1) higher than δ (class rise),

(2) within the range [−δ , δ] (class slight-change), and (3) lower than −δ (class fall). We attempt to

comprehensively interpret the price trend from different aspects:

ψ (e, s ) = (pe − ps )/ps . (1)

3.2 Framework Overview

Based on the aforementioned analysis, we explore the price trend forecast overmultiple future days

utilizing various open data from different domains. The big variant cross-domain data brings both

relevant and irrelevant features, the latter would play negative roles in the prediction process. In

this way, feature selection is necessary and should be taken into account. Therefore, we propose a

three-layer framework for the price trend prediction: (1) cross-domain open data layer, (2) feature

selection layer, (3) price trend prediction layer, and we show it in Figure 3. This framework is

flexible and can be generalized to predict the price trend of other bulk commodities. We employ

one representative of bulk commodities, iron ore, to describe the framework in the following.

(1) Cross-domain Open Data. We first retrieve all possible relevant data according to the

analysis of previous studies and prior knowledge. Then, we collect all possible and acces-

sible open data from various domains, such as historical price data, inventory quantity and

import quantity data, trajectory data of vessels transporting seaborne iron ore, urban air

quality data of cities in China, and stock price of relevant enterprises. Data from various

domains can help interpret the price trend from different aspects, and help improve the

prediction accuracy.

(2) Feature selection. We identify three influential factors, i.e., supply, demand and expec-

tation. To effectively quantify the influence of each dataset for the prediction, we then

categorize all collected open datasets into the three non-overlapping factors. The supply
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and demand factors focus on the formulation of the price. Specifically, the supply factor

mainly relies on datasets, indicating sources providing iron ore, e.g., iron ore inventory

in coastal ports and iron ore import from the overseas regions. For the demand factor, we

considers iron ore demand and consumption in short time in the way of vessel seaborne

transportation, e.g., arrival vessels in coastal ports, arrival/departure rate in specific rel-

evant ports and seaborne cost. The expectation factor mines the further latent features

for the price. For example, air quality can be affected by the usage of iron ore and reflect

the future demand of iron ore. Combining the three factors’ data with historical iron ore

price data, we select different relevant features corresponding to different prediction time

intervals.

(3) Price Trend Prediction. We feed all selected features to generate different datasets ac-

cording to different future time intervals. With the input data, we apply a hybrid clas-

sification model consisting of multiple prediction methods, to forecast a specific class of

the price over following days, rise, slight-change or fall. Through extensive experimental

results, we compare the performance of state-of-the-art prediction methods, to explore

suitable models for the price trend prediction over upcoming days. Furthermore, some

prediction time intervals with accurate and acceptable prediction results also can be rec-

ognized. The results would be beneficial for market participants to help them schedule

plans and adjust policies.

4 ANALYSIS OF PRICE TREND FACTORS

To understand influential factors of the price trend, researchers have conducted a series of stud-

ies [19, 34]. Based on the prior knowledge, we identify the following factors in determining the

price trend, i.e., supply, demand, and expectation. The more bulk commodities supplied with stable

demand would bring fierce competitions among traders and sellers, leading to decreasing prices

and corresponding profits. In contrast, the more bulk commodities demand with stable supply also

would change the equilibrium of prices. Another type of competitions among traders and sellers

would occur, resulting in increasing prices and profits. However, the determination of prices are

not easy. First, the supply and demand are dynamically changing with different time. Second, there

are also some marginal and extra potential influential factors, such as market participants’ confi-

dence. We name these extra influential factors as expectation factors. Based on the above analysis,

we select a set of open datasets related to the three factors, and then conduct correlation analysis

of each group factors with iron ore as an example of bulk commodities.

4.1 Supply Factor

There are three sources continuously providing iron ore for Chinese purchasers, including iron ore

inventory in ports owned by trading companies, iron ore import from overseas mining companies,

and domestic iron ore mined and sold by domestic companies. Among them, the domestic iron ore

has lower competitiveness due to its lower grade in iron ore and consequently higher processing

costs. Steel mills prefer iron ore from Australia and Brazil, with high grade in iron ore and low

processing costs. Consequently, iron ore is usually traded in the way of iron ore inventory in

coastal ports or direct overseas import. Therefore, the supply factor includes two groups of data:

the inventory quantity data and import quantity data of the past d days in p coastal ports. We

calculate relevant data from April 18, 2016 to April 20, 2017. We then analyze these data as follows.

4.1.1 Iron Ore Inventory. We analyze the correlation between inventory quantity and iron ore

price trend to verify their relevance. Specifically, for each port we first retrieve the inventory

quantity of all available ports collected by each Friday. We then compute the Pearson correlation

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 1, Article 1. Publication date: January 2020.
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Table 1. Correlation Coefficients of Top-10 Ports Most Relevant to IODEX Trend w.r.t. Inventory

ΔT = 1 ΔT = 5 ΔT = 10 ΔT = 20

1 Qinzhou (−0.8247) Luojing (0.8335) Luojing (0.7859) Lanshan (−0.5906)
2 Changzhou (0.8245) Changzhou (0.8141) Changzhou (0.7451) Nantong (0.4713)

3 Zhanjiang (0.8240) Zhanjiang (0.8094) Zhangjiagang (0.7313) Guangzhou (0.4642)

4 Luojing (0.8105) Qinzhou (−0.7855) Fangchenggang (0.7209) Zhajiagang (0.4621)

5 Rizhao (0.7485) Zhangjiagang (0.7462) Zhanjiang (0.7116) Fanchenggang (0.45)

6 Lianyungang (0.7385) Fangchenggang (0.7231) Qinzhou (−0.6768) Beilun (0.4356)

7 Jiangyin (0.7150) Lianyungang (0.7132) Lianyungang (0.6045) Luojing (0.4272)

8 Zhangjiagang (0.7138) Rizhao (0.7089) Longkou (0.5746) Changzhou (0.3674)

9 Fangchenggang (0.6880) Jiangyin (0.6811) Nantong (0.5718) Zhanjiang (0.2587)

10 Tianjin (0.6521) Longkou (0.6418) Rizhao (0.5705) Qingdao (0.2402)

Fig. 4. Changing trend of correlation coefficient of supply factors.

coefficient to measure their relationship, respectively. Table 1 shows the top-10 ports most relevant

to the IODEX trend w.r.t. iron ore inventory. Here, ΔT is defined as the prediction time interval.

From the table, we can find that port Qinzhou has a negative correlation coefficient while most

of other ports have positive correlations. Intuitively, the price trend would vary with the balance

between supply and demand. When the demand is greater than the supply, the price has high

possibility to rise. China has increased investment on infrastructure construction by 17.4% in 2016

and 19% in 2017, respectively [28]. With this high demand of iron ore, the price keeps rising while

the inventory quantity in each ports keep rising as well. Hence, for the ports having positive

correlations with the price trend, one possible reason is that the demand of iron ore is higher than

the supply continuously during this period of time. Besides, for port Qinzhou having a negative

correlation with the price trend, we find that the port congestion issue merely happens in the

small-scale port Qinzhou, which usually has inventory quantity as 10–30million tons. One possible

reason may be that the local steel mills consume iron ore quickly, reflecting the urgent demand of

iron ore directly. So when the inventory quantity in Qinzhou decreases, the iron ore price rises.

Besides, we need to notice that, ports having high Pearson correlation coefficients with IODEX

trend in iron ore inventory quantity, may not keep advantages with ΔT increasing.

Furthermore, we explore the impact of inventory on IODEX trend in different prediction time

intervals successively, and present the correlation coefficient changing trend of three selected ports

in Figure 4(a). From the figure, it can be seen that different ports have different changing trends.We

observe that the inventory quantities in some ports have gradually decreasing correlations with
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Table 2. Correlation Coefficients of Top-6 Ports Most Relevant to IODEX Trend w.r.t. Import

ΔT = 1 ΔT = 5 ΔT = 10 ΔT = 20

1 Rizhao (0.1048) Jingtang (0.1258) Jingtang (0.1563) Rizhao (0.3460)

2 Jingtang (0.0899) Caofeidian (0.0934) Caofeidian (0.1306) Caofeidian (0.2384)

3 Caofeidian (0.0857) Qingdao (0.0674) Rizhao (0.1230) Jingtang (0.2245)

4 Qingdao (0.0648) Rizhao (−0.0623) Qingdao (0.0912) Qingdao (0.1736)

5 Tianjin (−0.0459) Tianjin (−0.0269) Lianyungang (0.0384) Tianjin (0.1560)

6 Lianyungang (0.0053) Lianyungang (0.0259) Tianjin (0.0006) Lianyungang (0.1209)

the price trend when ΔT grows, such as Port Qinzhou. These ports are usually small scale ports.

The iron ore inventory can be consumed quickly by local steel mills. In this way, the inventory

quantities in these ports have diminishing correlations with the iron ore price. Moreover, we also

observe that the inventory quantities in some ports have increasing correlations with the price

trend when ΔT grows, such as Port Lanshan. These ports are usually large scale ports, usually

having inventory quantities greater than 300 million tons. These iron ores are usually transported

from large overseas iron ore mining companies. So the changing trend of correlation in these

ports may reflect that the latent changing national demand of iron ore. Therefore, the inventory

quantities in these ports have growing correlations with the iron ore price. Besides, we find that

the inventory quantities in some ports keep relative stable correlations with the price trend when

ΔT grows, such as Port Guangzhou. These ports usually located at significant coastal areas. Some

of these iron ore inventories are usually transported to some small scale inland ports for local

steels mills and trading companies. Hence, using only the inventories in these ports is not easy to

further clarify their correlations with the price directly when ΔT grows. Therefore, we introduce

more data sources for further analysis, e.g., iron ore import in ports.

4.1.2 Iron Ore Import. We also characterize the iron ore import part by the import quantity

collected from available ports, and analyze their correlations. Due to the limited data resources,

we calculate six major relevant ports data, and present the analysis results in Table 2. Note that

import quantities in all the ports have very weak relationship with IODEX trend. The correlation

coefficient of import quantity in each port with the price trend varies when ΔT changes. We an-

alyze the impact of import on IODEX trend in different ΔT s as well, and present it in Figure 4(b).

From the figure, we can observe that the trends of correlation coefficient between import quantity

in different ports and iron ore price vary with ΔT grows, similar to the iron ore inventory.

4.2 Demand Factor

Based on the influence caused by iron ore supply, the price is also susceptible by iron ore demand.

But due to the trade secrets, it is hard to obtain the iron ore demand plans openly from potential

purchasers, e.g., steel mills and iron ore traders. Meanwhile, the iron ore desired by major pur-

chasers (e.g., China) will be transported from the major overseas suppliers (e.g., three predominant

iron ore producers). In this way, we consider to analyze the demand factor from the perspective

of vessel transportation. Specifically, we take two critical factors into account, seaborne cost and

vessels mobility, to reflect the vessel transportation situation.

4.2.1 Seaborne Cost. For seaborne cost, a high demand should be reflected in a high shipping

cost. More specifically, the demand of iron ore is driven by the endogenous need of the purchasers,

e.g., steel mills and trading companies. And then, high demand will result in a more competing

shipping market, and thus raise the seaborne cost. Therefore, we select seaborne cost to analyze
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Fig. 5. Changing trend of correlation coefficient of demand factors.

Table 3. Correlation Coefficients of Top-6 Ports Most Relevant to IODEX Trend w.r.t. Vessel Arrival Rate

ΔT = 1 ΔT = 5 ΔT = 10 ΔT = 20

1 Caofeidian (0.1840) Caofeidian (0.1650) Caofeidian (0.1784) Rizhao (0.2886)

2 Rzhao (0.1455) Jingtang (0.1520) Jingtang (0.1674) Caofeidian (0.2323)

3 Qingdao (0.1298) Qingdao (0.1289) Rizhao (0.1580) Jingtang (0.2061)

4 Jingtang (0.1162) Rizhao (0.1010) Qingdao (0.1374) Qingdao (0.2053)

5 Lianyungang (0.0378) Tianjin (−0.0253) Lianyungang (0.0654) Lianyungang (0.1633)

6 Tianjin (−0.0278) Lianyungang (0.0123) Tianjin (−0.0133) Tianjin (0.1311)

the demand factor of iron ore. Here, we characterize the seaborne cost by employing the Baltic

Dry Index (BDI)[1], a daily economic indicator to assess the seaborne cost of bulk commodities.

We then analyze its correlation with IODEX trend in different ΔT s successively. From Figure 5(a),

we observe that BDI has decreasing correlation with iron ore price when ΔT increases. It has high

correlation with iron ore price, and achieves 0.58 when ΔT = 1. When ΔT = 21, the correlation

reaches the weakest point as minus 0.01, and then starts growing the correlation in a negative

manner. Therefore, we need to introduce more datasets to find relevant features when ΔT grows.

4.2.2 Vessel Arrival and Departure Rate. For vessels mobility, the arrival rate of vessels trans-

porting iron ore should be considered, due to its indication of vigorous demand of iron ore in

short time. Currently, the accessible and easy-access data only provide weekly arrival rate of only

6 coastal ports in China. We analyze the impact of weekly arrival rate of vessels on IODEX trend

in different ΔT s, and demonstrate it in Table 3. From the table, we can find that vessel arrival rate

in these ports have weak relationship with IODEX trend. And the correlation coefficient of vessel

arrival rate in each port with the price trend varies with ΔT . With ΔT increases, vessel arrival

rates in some ports have growing correlation with IODEX trend, such as Port Rizhao. High vessel

arrival rate may reflect high vessel mobility. The competing shipping market would be influenced,

reflecting the latent demand of iron ore as well.

We notice that the transportation duration from overseas mining regions to China would reach

15 to 30 days. It would be beneficial for our study to conduct a fine-grained estimation of arrival

rate to complement the weekly arrival rate, and also estimation of departure rate of overseas ports

with major iron ore export. For this issue, we notice that the trajectory of these specific types of

vessels can complement and refine the weekly arrival rate. In addition, the trajectory data can

also extract the number of departure vessels in the departure ports located in iron ore production
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Fig. 6. Illustration of vessels in ports and terminals.

regions. In this way, we decide to collect all vessels’ data who participate in iron ore seaborne

transportation.

Due to the constraint of iron ore transportation, there are specific types of vessels for the iron

ore seaborne transportation, including very large ore carriers, capsize bulk carriers, paramax bulk

carriers, handymax bulk carriers, and handysize bulk carriers. The type of Very large ore carriers

often falls into the capsize bulk carriers group, and here we also accept this popular and general

operation. According to the vessel name, we can confirm and collect their trajectory record data.

On this process, we may encounter some vessels with a same vessel name. When meet these situ-

ation, we use the dead-weight ton (DWT) to narrow down and confirm the unique desired vessel.

In this way, we collect the trajectory record data of all involved vessels.

Arrival and Departure Rate Refinement.We propose a two-phase model to estimate arrival

and departure rate of relevant ports leveraging vessels’ trajectory record data. The first phase is

stationary event identification, inwhichwe take various features from trajectory data into account,

i.e., location, traveling speed and heading direction, to detect the stationary event. The second

phase is arrival and departure rate estimation, in which we confirmwhether any vessel with stable

location is located in any relevant ports, including ports in Australia, Brazil, and China.

Phase I —Stationary Event Detection. The readings of a vessel’s position is not solid due to the

AIS errors, even when the vessel stays stationary without any moving [4]. Thus, it is necessary to

extract stationary events from the large amount of AIS trajectory data. A vessel AIS trajectory tra

is a sequence of AIS points ap that the movement of an object recoded in the format of latitude lat ,
longitude lnд, time stamp t , heading hd , speed sp with the identification of the objectvid . Usually,
ap.vid is confirmed by the maritime mobile service identify (mmsi) of the vessel. In this way, a

vessel’s trajectory can be represented as tra = ap1− > ap2− > · · · − > apn .
We employ an adaptive sliding window-based approach to detect all possible stationary events

[4, 56], with both distance and time difference constraints. As shown in Figure 6(a), for a tra,
we start by checking apm-> · · · − > apm+k , whether both apm+i .sp < ε and apm+i+1.sp < ε . If
apm+i .sp >> 0 or apm+i+1.sp >> 0, then it indicates the vessel is moving, rather than berthing

or even staying stationary. If apm+i .sp < ε and apm+i+1.sp < ε , then we continue to check whether

Distance (apm+i ,apm+i+1) < Δd and |apm+i .t − apm+i+1.t | > Δt . If so, then it indicates that the ves-
sel moves in a small range during a long time, which is most possible for berthing or staying sta-

tionary. Thus, we expand the window size to cover one more ap until a new coming apm+j has a
larger distance to the first point in the window than Δd, no matter the time difference between the

two ap. In the experiment, we set Δd = 1 meter and Δt = 5 minutes for stationary event detection.
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Phase II —Arrival and Departure Rate Estimation. For all detected stationary events, we represent

the stationary event event as event = (aps , spe , ts , te , lats , late , lnдs , lnдe ). Here, s denotes the start
time, e denotes the end time, lat denotes the latitude, and lnд denotes the longitude. Note that

there are some events our problem does not cover. For example, some temporary stays happen

at sea, and some berthing events occur in other ports rather than our desired ports, like vessels

from Brazil to China stopping in Indonesia and Philippines. Here, we need to confirm original and

destination ports of iron ore transportation. We confirm the original ports as port Hedland, port

Dampier, port Walcott, port Tubarao, port Ponta Da Madeira, and port Itaguai, since the typical

iron ore sellers are located in Western Australia and Brazil. For destination ports, we select the

coastal ports in China as the destinations, such as port Qingdao. And then, we check their position

with a rectangle area area to cover the port, represented as area = (lat1, lat2, lnд1, lnд2). With the

several predefined rectangle areas, we identify whether the stationary event occurs in these areas,

if
∏2

i=1 (lati − latj ) < 0 and
∏2

i=1 (lnдi − lnдj ) < 0, j = s, e .
As shown in Figure 6(b), we present a snapshot of port Qingdao in China by satellites with mul-

tiple vessels travelling in the sea and staying in the port. We only consider arrival events happened

in destination ports and departure events occurred in original ports. After the identification of the

arrival and departure events of original and destination ports, we are able to estimate daily arrival

rate and departure rate by summing up the arrival or departure events.

With these estimated arrival rate and departure rate, we analyze the changing trend of their

correlation coefficient with IODEX trend in different ΔT s, as shown in Figure 5(b). From the figure,

it can be seen that the estimated arrival rate and departure rate have different changing trends.

We observe that the estimated arrival rate has increasing correlations with the price trend when

ΔT grows. The changing trend of correlation coefficient of estimated arrival rate has verified our

aforementioned analysis on weekly arrival rate, and the necessity of this fine-grained estimation.

Moreover, we observe that the estimated daily departure rate has decreasing correlations with the

price trend when ΔT grows. After several shipping days, these vessels from overseas ports with

major iron ore export reach destination ports, bringing a large number of bulk commodities (e.g.,

iron ore). At that time, some demand of iron ore would be satisfied. Hence, the changing trend of

correlation coefficient of estimated departure rate decreases with ΔT .

4.3 Expectation Factor

Besides these direct effects, there are also some indirect influences.We identify two critical features

based on our prior knowledge, air quality and stock price. When the air quality of some cities gets

worse, with high concentration SO2, NO2, andCO,we should pay attention to these pollutions. The

emissions of these high concentration pollutants are usually from the steel and ironmanufacturing

processes [41, 48]. These high concentration pollutants may indicate the demand of iron ore not

only in this period but also in the short future. In addition, the stock price of market entities

involved in this industry, including steel mills, trading companies, port companies, and seaborne-

related companies, also represents the prosperity of this industry andmarket investors’ confidence.

Hence, we retrieve and collect the expectation factor based on two data sources, air quality of 190

cities of pastd days, and stock price of 62 selected A-share listed companies in China of pastd days.

4.3.1 Air Quality. We analyze the correlation between air quality with iron ore price trend. As

shown in Figure 7, the distribution of steel mills has an overlap with heavy air quality regions.

In the map of China, we could observe that each province has been filled with different degree of

different colors. The color reflects the degree of the mean air quality index. The size of light purple

circles in the figure indicate the steel production volume statistics in 2016 calculated through top

steels mills in China [47], shown in Figure 8. Note that, provinces without large-scale steel mills
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Fig. 7. Air quality heatmap and steels production

distribution.1
Fig. 8. Top steel production provinces in

China.1

Fig. 9. Pearson correlation coefficient heatmap when ΔT = 1 and 24, respectively.

also have dark red indicator in air quality index, such as Xinjiang, Qinghai. The reason behind

may lie in the frequent pollutions of sand and dust, the common usage of coal for warming. We

also should notice that there are some outliers with larger steel production and better air quality,

e.g., Shanghai. We would discuss the possible reasons using an example of Shanghai. Shanghai has

a big steel company Baosteel, one of the biggest iron and steel companies worldwide with a large

amount of steel production [9]. Meanwhile, the geographic features (e.g., climatic condition) of

Shanghai and the advanced air quality governance measures help the air circulation and further

improve the air quality. Therefore, we should pay attention to extract useful features based on

these factors for future price trend prediction. Thus, we confirm that air quality has a relationship

with steel production, linking to iron ore usage and reflecting the expectation of short future.

We further analyze the correlation of each air quality attribute of each city with IODEX trend,

as presented in Figure 9(a). We observe that all attributes have correlations with iron ore price

when ΔT = 1. When ΔT = 24, air pollutants (e.g., SO2, NO2, CO) keep strong correlation with the

price, while the other air quality attributes lessen their impact on the future price. Even for one

specific air quality attribute, the correlation with the price in different ΔT differs. Note that the

1Statistics from https://www.worldsteel.org.
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corresponding spectrum of air pollutant CO in the bottom part is lighter than its counterpart in

the upper part at most points.

4.3.2 Stock Price. We also analyze the correlation between stock price with iron ore price trend.

Similar to air quality, stock price also has several components resulting in multiple attributes, e.g.,

daily transaction Volume (VOL) and daily transaction Amount (AMO). We conduct the analysis

between each stock price attribute of each public A-listed company and iron ore price, and show

the computation results in a heatmap in Figure 9(b). As shown in the upper part of the figure, we

observe that stock price has strong correlation with iron ore price when ΔT = 1. Circulation value,

closing price, highest price, lowest price, opening price, previous close price, total value, all have

distinct colors in their spectrums, indicating high positive impact up to 0.8 and negative impact

to −0.4, respectively. Meanwhile, there are also some stock price features have weak correlation

with the price, such as change. In the bottom part of the figure, we can see that there do not have

any spectrum with strong correlation of future T business days. The correlation coefficient ranges

of stock price features in all these companies is narrowed when ΔT = 24, compared with the sit-

uation when ΔT = 1. Most stock price features have impact on iron ore price with correlation

coefficient locate in [0.25, 0.5] and [−0.5, −0.25]. In addition, the stock price features in differ-

ent ΔT s have different impacts, some increase (e.g., change) and some decrease (e.g., circulation

value).

5 PRICE TREND PREDICTION

Due to the sequential and continuous characteristics of the price trend prediction in different future

time intervals, we exploit classification-based approaches to solve this problem. In particular, we

propose a hybrid model for Price Trend Prediction (Pride), which consists of multiple prediction

models, i.e., Adaboost [13], SVM [10, 20], Naive Bayes [11, 27], and GBDT [14, 18], for different

future time intervals. Specifically, we first select different relevant features from combining factors

corresponding to different prediction time intervals, and then feed these selected features to form

different training datasets. Based on these pairs of training datasets and objective datasets, we

apply multiple independent predictors for each pair dataset, respectively. Note that all features

need to be mapped and scaled to fit the models.

5.1 Feature Selection

We employ the randomized lasso method [25] to select important features for the three-class pre-

diction problem. The reason why we select this method is because it can be beneficial for relevant

features selection while avoiding overfitting. In our problem, given collected data matrix Xm×n
and label matrix YT

m , with a prediction time interval ΔT , we first get a data matrix and define

it as X (ΔT )
m′×n of the three non-overlapping categories, with each column Xk indicating a feature,

k = 1, 2, . . . ,n, and a corresponding matrix Y (ΔT )
m′ , where m′ denotes the constrained number of

data samples. We then adopt the randomized lasso approach to select relevant features.

When the lasso method chooses parameter λ as penalty for L1-norm of βk , the randomized

lasso considers changing the λ to a randomly selected value in the interval from λ to λ/α . In the

parameter optimization procedure, the k-th column of matrix X would be rescale with a random

parameterWk in interval [ℵ, 1]. In this way, each type feature can be assigned a non-negative score
to represent its relevancy. We select top s features to form a new feature matrix X (ΔT )

m′×s , and then

we form a data matrix Z (ΔT )
m′×(s+1) composed of Xm′×n and YT

m′ for models.
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ALGORITHM 1: Pride Algorithm

Input: Feature Matrix Xm×n , label vector YTm , randomized parameter α , selection parameter s , predictors
set PRED = [Adaboost, SVM, GBDT, NB]

Output: predicted label vector Y
1: for ΔT = 1 to T do

2: form X
(ΔT )
m′×n and Y

(ΔT )
m′

3: set random variableWk ∈ [α ,1]
4: βopt := argminβ ‖Y − Xβ ‖22 + λ

∑n
k=1

|βk |
Wk

5: list βopt in descend order, as β
(1)
opt , β

(2)
opt ,. . . , β

(T )
opt

6: select top-s in βopt and reset the order number RS = [rs1, . . . , rss ]

7: X
(ΔT )
m′×s ← features selected from X

(ΔT )
m′×n with RS

8: Z
(ΔT )
m′×(s+1) ← (X

(ΔT )
m′×n , (Y

(ΔT )
m′ )T )

9: for i = 1 to 4 do

10: while cross-validation do

11: shuttle Z tr and Z te , apply PRED(i) for Z tr , apply best_paras(i) for Z te

12: end while

13: obtain best_prediction(i)

14: end for

15: iopt := argmaxß best_prediction(i)

16: YΔT ← best_prediction(iopt )
17: best_pred(ΔT )← PRED(iopt ) with best_paras(iopt )
18: end for

19: Y ← concatenate YΔT , ΔT = 1 to T

20: return predicted YT

5.2 Hybrid Prediction Classification Model

We propose a hybrid model consisting of multiple predictors, Adaboost, SVM, Naive Bayes, and

GBDT [14, 18]. Adaboost is an algorithm using weak learners to create a strong predictor for

classifications. It can avoid overfitting problem effectively while obtaining high accuracy. SVM is

a strong discriminative predictor to generate an optimal separating hyperplane to distinguish data

with different labels. It can copewith nonlinear and high-dimensionality problems effectively. Both

Adaboost and SVM treat multi-class problems as a combination of several binary classification

problems, and they decompose one-to-one strategy to address these issues. Naive Bayes (NB), a

probabilistic predictor based on Bayes’ theorem, is able to generate the probabilities of predicting

instances, and then assign corresponding class labels for the instances. This predictor can perform

well in small-scale datasets, and is robust to missing data. GBDT, an ensemble in decision tree

style of weak predictors, produces a prediction result based on prediction results of all involved

predictors. It is robust with outliers. The construction of the prediction model is in a stage-wise

way, e.g., boosting approaches. Based on their advantages, we choose these four classification

models.

We then apply this model into several data matrices for corresponding prediction time intervals

separately, to achieve a sequential multi-class prediction of following T business days. In particu-

lar, given the input matrix Z (ΔT ) ∈ Rm′×(s+1) representing the price trend prediction of future ΔT ,
we attempt to apply each classification model, to discover the patterns from feature matrix X to

the label matrixY with three labels. Here, we should notice that the performance of a classification

algorithm usually depends on which classification task it applied. For example, an algorithm good

at the face recognition task may not achieve a good performance in the visual object categorization
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Table 4. Description on Datasets

Datasets Periods Description

Price 12/01/2010–5/30/2017 1,632 records

Supply Factor
Inventory 5/8/2009–4/14/2017 11,970 records; 30 ports

Import 1/31/2014–4/14/2017 978 records; 6 ports

Demand

Factor

BDI 4/1/2016–5/5/2017 274 records

Arrival Vessels 1/31/2014–4/14/2017 978 records; 6 ports

Vessels Types 2016 11,000 records; 4 types

GPS Trajectory 4/1/2016–4/23/2017 130,178,664 records

Expectation

Factor

Air Quality 1/1/2014–4/20/2017
1,603,980 records;

190 cities, 7 types

Stock Quotation 1/1/1993–5/5/2017
3,268,206 records;

62 companies, 9 types

task. The No Free Lunch theorem points out that NO algorithm will perform BETTER than all

others when averaged over all possible problems [44–46]. That is, there is NO classification algo-

rithm can be universally good [23]. In our study, it could be considered as a different classification

task if the input is changed. In the price trend prediction of different ΔT s, after a few features are

selected, we need to find which classification algorithms are performed well for these features.

Specifically, some features play relatively short-term effects on the price trend prediction. For

example, feature inventory quantity in some ports has a strong correlation with the price trend

of the next day, as aforementioned. While, some features play relatively long-term effects on

the price trend prediction. For example, feature estimated arrival and departure rate of vessels

transporting bulk commodities, which have not yet arrived in China, can reflect the iron ore

demand of purchasers in China, and then influence the price trend. Therefore, we propose a hybrid

classification model composed of multiple classification algorithms, to solve different future time’s

prediction with appropriate classification algorithms to achieve best prediction performance.

6 EVALUATION

We evaluate the performance of our framework based on various real-world datasets from different

domains. Iron ore is employed to conduct experiments, as an example of bulk commodities.

6.1 Experimental Settings

6.1.1 Datasets and Preprocessing. We collect iron ore price (IODEX) data and relevant influen-

tial factors data, and present them in Table 4. The description of these datasets in detail are as

follows.

(1) Price data: We collect iron ore price (IODEX) data, from one of the leading steel-related

information providers, qianzhan.com [35]. The dataset is provided every workday, and

presented in U.S. dollar. After a data cleansing and preprocessing progress, we obtain 304

instances.

(2) Supply factor data: We collect data from two aspects, weekly iron ore inventory quantity

and iron ore import quantity in 30 significant ports (e.g., port Qingdao and port Tianjin)

and 6 significant ports (e.g., port Caofeidian and port Jingtang) of China, respectively, also

from qianzhan.com [35].

(3) Demand factor data: We collect data from the perspective of vessels’ arrival rate of 30

significant ports, GPS trajectory of seaborne vessels and BDI. The arrival rate data is also
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Fig. 10. Illustration of the price trend prediction.

retrieved from qianzhan.com [35]. For vessels GPS trajectory data, we first retrieve the

four specific types vessels’ data from Clarkson Research SIN [36], including name, DWT.

Based on these data, we collect vessels’ GPS trajectory data from hifleet.com[29], who

provides free historical vessel trajectory retrieval with trial accounts. We also retrieve

BDI value of each workday from Bloomberg Markets [24].

(4) Expectation factor data: We retrieve data from air quality in 190 cities in China and stock

data of significant relevant enterprises. The daily air quality data is collected from aqis-

tudy.cn [32], one of the predominant air quality information service providers. For stock

data, we confirm that there are 62 listed companies in A-share market of China, including

steel industry-related and overseas transportation-related companies. We then retrieve

these historical data from NetEase Finance [12], who provides all historical data of all

listed companies in China.

6.1.2 Evaluation Plan. We conduct price trend prediction tasks over upcoming T days simulta-

neously. Here, we set the threshold δ as 0.008 and T as 24. We use the data during the last 30 days

for these T prediction tasks, as shown in Figure 10. For the price trend prediction of (t + ΔT )’s
day, the dataset is consisting of all involved data during last 30 days [t − 29, t], and the price trend
data of day t + ΔT . ΔT ∈ [1,T ]. We then partition this dataset into non-overlapped training set and

testing set by a ratio of 4:1. Specifically, we use the first 10 months data as the training data and

the following 2.5 months data as the testing data.

6.1.3 Metrics and Ground Truth. We predict the changing trend of the price, and the ground

truth can be obtained from its later readings. We define the following metrics to evaluate the

prediction accuracy [57], to obtain the average precision, recall and F1-score of the three classes:

macro_P =
1

n

n∑

i=1

Pi , (2)

macro_R =
1

n

n∑

i=1

Ri , (3)

macro_F1 =
2 ×macro_P ×macro_R

macro_P +macro_R
. (4)

6.1.4 Baselines. We compare ourmethodwith following baselines. Note that each specific base-

line method shares the same parameters in the price trend forecasting tasks on different ΔT s.

• Adaboost (Adaptive Boosting Algorithm): This baseline method inputs the distribution of

training data into several individual predictors, and then strengthen their classification

powers.

• GBDT (Gradient Boost Decision Tree): This baseline method is a powerful method for ma-

chine learning problems, with one tree constructed a time to fit the residual of preceded

trees.
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Fig. 11. Average performance comparison of individual factors.

Fig. 12. Duration-level performance comparison of individual factors.

• NB (Naive Bayes): This baseline method is a probabilistic predictor applying Bayes theorem

for features with independence and objectives.

• SVM (Support Vector Machine): This baseline method is a typical predictor for multi-class

problems. We utilize one-against-all strategy, and adopt LIBSVM here.

• Adaboost w/ fs: This baseline method first performs feature selection process and then ap-

plies the Adaboost algorithm for price trend prediction.

• GBDT w/ fs: Similarly, this baseline method selects relevant features and then uses GBDT

to these features for the price trend prediction.

• NB w/ fs: Similarly, this baseline method uses feature selection first, and then applies NB to

selected features to forecast the price trend of bulk commodities.

• SVMw/ fs: Similarly, this baseline method leverages SVM after feature selection process for

forecasting the price trend of bulk commodities.

6.2 Results and Analysis

6.2.1 Study of Individual Factors. Experimental results of the study of individual factors and

involved features, have been depicted in Figures 11 and 12. The continuous future 24 business days

have been divided into four periods, 1–6 days (1–6d), 7–12 days (7–12d), 13–18 days (13–18d), and

19–24 days (19–24d). avд_P , avд_R, and avд_F denote average value of macro_P , macro_R, and
macro_F1 of these 24 days, respectively. For individual features, avд_Imp denotes average value

of macro_F1 of feature Imp. This definition is generalized, generating avд_Inv , avд_Imp + Inv ,
and so on.

For the supply factor including inventory and import features, we should notice that the inven-

tory quantity in each port can be influenced by the import quantity, since some trading companies

warehouse some import bulk commodities in ports for future trades. These redundant features

are correlated to some extent. To avoid a potential overfitting issue caused by the effect of multi-

collinearity, we apply Adaboost w/ fs process to evaluate the performance. From Figure 11(a), we
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observe that the combined factor obtains better performance than any individual feature (inven-

tory Inv and import Imp) in the average value of T days’ prediction, reflecting the effectiveness

of these selected features. Besides, Inv plays more positive part than Imp. One reason may lie in

that the larger number of participant ports in inventory, while only six ports can provide weekly

import quantity due to limitation and hard-access of public open data. We also observe that all

features and the factor can have better performance with increasing prediction time intervals, and

achieve the best performance in the last prediction duration (i.e., 19–24d) in Figure 12(a). This ob-

servation indicates that participated features have delayed impact on the price, which is consistent

with previous analyses.

For the demand factor, it includes seaborne cost, and estimated arrival and departure rate of ves-

sels. The latter features reflect further latent demand of iron ore, and cannot be confirmed a linear

correlation with the price trend directly. Therefore, we adopt SVM w/ fs for the performance eval-

uation, which solves nonlinear classification problems effectively. From Figure 11(b), we make the

following observations. First, the surprising result is that BDI is not as effective as other features.

One reason is that the impact from other aspects of iron ore price may play more important role

than the seaborne fee change. Second, the combination of BDI and weekly arrival vessels AV can

achieve better performance compared with BDI and AV. This observation illustrates the effective-

ness and necessity of both individual features. Third, we introduce vessel GPS trajectory data to

extract daily arrival and departure rate in relevant ports to expand and complement AV to formu-

late PAV. About these two features, we observe that PAV perform better than AV during all future

intervals, and in terms of all metrics. This observation validates the advantages of vessel GPS tra-

jectory data. From Figure 12(b), we observe that this whole factor improves the performance in all

prediction durations. It indicates that the two features can complement each other.

For the expectation factor, as aforementioned, there are lots of features with some noisy data,

e.g., air quality data of Shanghai. These noisy data would influence the forecast performance. Thus,

we employ GBDT w/ fs for the performance evaluation, to cope with these outliers and be robust.

From Figure 11(c), we observe that air quality AQ is not as effective as stock price Stock, with lower

average value in three metrics. The reason may lie in that stock price of typical predominant iron

ore and steel-related companies can reflect the expectation of markets’ participants, who would

play a more heuristic and direct impact on the iron ore price bid. Moreover, combination with AQ

and Stock can have the best performance, indicating that the two types features can complement

each other, with one from the subjective reality (human choices) and one from the objective re-

ality (physical environments). From Figure 12(c), we observe Stock keeps a positive growing rate

with the time interval, and expands its difference with AQ, which is consistent with our previous

analysis.

6.2.2 Study of Factors Combination. We study the factors combination by applying our pro-

posed Pride algorithm. Experimental results of this study on the effectiveness of factors are shown

in Figure 13. We add different factors gradually, i.e., Supply factor (S), Demand factor (D), Expecta-

tion factor (E), and Iron ore historical price (I), and observe improvement on the average macro_F1

in the prediction of following T days.

We first present the experimental results of day-level performance comparison in Figure 13(a).

One observation is that SD can achieve better performance than S in almost every future day pre-

diction, excepting predictions of two future days with slight differences. Meanwhile, the average

macro_F1 value of SD is higher than S, showing almost 7% improvement. This verifies the effec-

tiveness and justifies the necessity of the demand factor. Second, we observe that SDE and ISDE

both have obvious improvements compared to S and SD in most time. Performance differences

would decrease when the prediction time interval grows, and the biggest difference occurs during
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Fig. 13. Performance comparison of different factors.

Fig. 14. Performance comparison of different methods with and without feature selection process.

the future eighth days. One reason behind this may be that the stock price plays a more immediate

role for the iron ore price change. The exception happens when the prediction time interval equals

to 22, when the performance of S and SD both can surpass SDE and ISDE. Since we have selected

features before feeding into prediction models, the possible reason may be that the historical in-

ventory data and import data play significant roles for the future 22nd working day’ prediction.

We can see that ISDE obtains big improvements compared to SDE when the prediction time in-

terval equals 1 and 8. One reason behind may be that the time-delay influence of the price is not

constant, and has some changes. To examine the performance in a duration-level, we also present

experimental results in Figure 13(b). One observation is that the performance of S is getting higher

with time interval growing, and this observation also happens to SD, SDE, and ISDE. It indicates

that the high influence of time-delay, and the macro_F1 score of S to ISDE achieve high value from

0.6 to 0.69 in 19–24d duration. Furthermore, we observe that the performance is growing in each

time interval with the in turn factors adding, S, SD, SDE, ISDE, which validate the effectiveness of

the factors added.

6.2.3 Study of Feature Selection Process. The experimental results of baseline algorithms with-

out feature selection are presented in Figure 14. Compared with the application of baseline algo-

rithms with feature selection, the new experimental results of baseline algorithms without feature

selection verify the effectiveness of the feature selection process. Each specific algorithm with fea-

ture selection process outperforms it without feature selection process in the respective figures.

Moreover, we can observe that for somemethods, e.g., NB and SVM, there has been notable perfor-

mance difference between the method with and without feature selection process. While, for some

ensemble methods, e.g., Adaboost and GBDT, there has been less performance difference between

it with and without feature selection process. This may be because, without an effective feature

selection process, there may have been redundant information and multi-collinearity between fea-

tures. In this way, the ensemble approaches are able to cope with these situation and obtain good
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Table 5. Comparison with Baselines w.r.t. Average macro_F1

����clf
ΔT

1 2 3 4 5 6 7 8 9 10 11 12

Adaboost w/ fs 0.477 0.488 0.547 0.455 0.467 0.482 0.459 0.461 0.579 0.481 0.56 0.58

GBDT w/ fs 0.473 0.453 0.536 0.556 0.483 0.537 0.483 0.444 0.533 0.552 0.57 0.557

NB w/ fs 0.522 0.580 0.555 0.656 0.637 0.446 0.482 0.543 0.602 0.636 0.71 0.651

SVM w/ fs 0.595 0.576 0.590 0.665 0.571 0.585 0.586 0.651 0.659 0.551 0.60 0.702

Pride
(predictor)

0.672
(SVM)

0.596
(SVM)

0.628
(SVM)

0.678
(SVM)

0.665
(NB)

0.585
(SVM)

0.656
(SVM)

0.702
(SVM)

0.659
(SVM)

0.671
(NB)

0.711
(NB)

0.702
(SVM)

����clf
ΔT

13 14 15 16 17 18 19 20 21 22 23 24

Adaboost w/ fs 0.571 0.584 0.567 0.553 0.526 0.567 0.581 0.64 0.568 0.623 0.691 0.622

GBDT w/ fs 0.544 0.569 0.587 0.586 0.566 0.567 0.592 0.636 0.585 0.616 0.683 0.595

NB w/ fs 0.647 0.704 0.621 0.682 0.635 0.689 0.626 0.778 0.700 0.745 0.722 0.718

SVM w/ fs 0.584 0.740 0.599 0.675 0.620 0.677 0.645 0.691 0.695 0.732 0.744 0.674

Pride
(predictor)

0.674
(NB)

0.753
(SVM)

0.665
(SVM)

0.720
(SVM)

0.664
(SVM)

0.762
(NB)

0.698
(SVM)

0.778
(NB)

0.760
(NB)

0.774
(SVM)

0.826
(NB)

0.735
(NB)

performance. However, NB assumes all features are independent and unrelated to each other. The

possible multi-collinearity in features would impact NB’s performance. For SVM, this method is

hard to obtain good performance with the situation of many irrelevant features [43].

6.2.4 Comparison of Different Predictors. We compare the effectiveness of state-of-the-art pre-

dictors, i.e., Adaboost, GBDT, NB, SVM, and our Pride. The experimental results are presented in

Table 5. Please note that the random choice method for this three-class prediction problem should

be 33% for each day’s prediction. We first observe that method NB and method SVM can obtain

better performance than method Adaboost and method GBDT with higher average macro_F1, in

most days’ prediction. It helps present the effectiveness of the feature selection methods random-

ized lasso in this problem, which can select different useful features for the price trend prediction

on different future days. It also indicates that within the selected features, there are lots of nonlin-

ear features to improve the prediction performance. Moreover, we observe that the performance

of price trend prediction on different ΔT is varying with one particular prediction method. More

specifically, the price trend prediction on former several days often obtain worse performance

with lower average macro_F1 values, compared with the prediction on latter several days, which

usually get higher values. For example, note that the overall prediction performance of the last 5

days is much better than the performance of previous days. It validates our aforementioned anal-

ysis and effectiveness of introduced features, especially the estimated arrival and departure rate

of seaborne vessels. Furthermore, one surprising observation is that the best performance of each

method all occurs in the 23rd day, highlighting a best prediction time for iron ore-related entities.

Note that the iron ore price is only published in working days. Here, the prediction of future 23rd

day means predicting the price of the next 23rd working day, which may be the next 29th normal

day (adding an extra 2 days each week). One possible reason of this surprising observation may be

the estimated arrival rate, since seaborne vessels would reach coastal ports in China 15–30 days

normally. In addition, we also present the specific algorithms selected for the price trend prediction

on each ΔT , and demonstrate it as an additional row in Table 5. From the table, we can observe

that the selected algorithm does not correspond to the baseline algorithm with best performance

on the specific ΔT . In particular, the application of one specific baseline algorithm on each ΔT
share the same parameters. Moreover, we can also observe that most of the selected algorithms
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Fig. 15. Impact of time delay. Fig. 16. Impact of training data size.

are SVM and NB. One reason behind may be the feature selection part. After the feature selec-

tion process, all selected features fed into the prediction models may eliminate many redundant

information, and remain some nonlinear features.

6.2.5 Impact of Different Time Delay. The impact of different time-delay on each day’s iron ore

price trend prediction is presented in Figure 15, through identifying major influential features of

each prediction. From the figure, we observe that most influential features are concentrated within

a duration from past 17th to past 2nd day. It indicates that the data of all features aforementioned

of past 2nd–17th days plays a positive role to predict the future ΔT days’ iron ore price trend. Fur-

thermore, we notice that the Inter-Quartile Range does not change much with different prediction

days excepting a few bars, e.g., when ΔT equals to 1, 6, 7, 8, and 9. It refers to the concentration

trend of most influential features. In addition, we also observe that the data from past 30th to past

20th day plays a certain role for the future iron ore price prediction, especially when ΔT is from

1 to 15. In this way, when we predict the iron ore price of future 15th day from T th day (e.g.,

T + 15th), we need to feed data of past 30 days [T − 30, T ]. All data is useful for the prediction.

Meanwhile, when we predict the iron ore price of future 24th day (e.g.,T + 24), feeding data from
past 20 days [T − 20, T ] is enough and can obtain acceptable prediction results.

6.2.6 Impact of Training Data Size. Experimental results of impact of training data size are

shown in Figure 16. We observe that the performance using different size of training data varies.

When using factors SDE and ISDE, we find that the size of training data has a large impact on the

macro F1-score, validating the significance of our feature selection process. Most relevant features

are selected and form the training dataset, with less relevant features discarded. feature selection is

critical in our problem, due to the imbalance between size of samples and size of features. Without

the feature selection, size of features is much larger than the size of samples, making our model

vulnerable and unstable. We further observe that ISDE has slight improvement compared with

SDE. This improvement can be identified clearly when the size of training data grows to 80%. It

indicates that the feature of the price plays a significant role on the future price trend prediction.

7 DISCUSSION

Having presented abundant research results, we will conduct a deep discussion about our work

and several limitations from the following perspectives.

From the perspective of data, due to the data access difficulties, we are unable to obtain sufficient

data. For instance, there exist daily statistic data of inventory and import in ports. However, in our

work, we can only collect weekly inventory data and import data. If the data can be refined into

daily data, then our proposed framework may be able to produce a more fine-grained prediction.
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From the perspective of problems, we transform our price trend prediction problem into a T-

length sequence of continuous sub-problems. It is a meaningful short-term price trend problem.

Besides, a price trend prediction with longer term, such as several months, also plays an important

role for markets participants and government administrators. In the future, we expect to extend

our work to a farther future prediction, to achieve acceptable predictions with 3–6 months in

advance.

From the perspective of implications, we provide a novel way for researchers to study the

economic-related problem with cross-domain open data, to connect the physical world with the

economic virtual world. With more open data, we may explore more cross-domain studies, which

cannot be solved well with knowledge from one specific domain.

From the perspective of application to other bulk commodities, it is practical to apply our frame-

work to other bulk commodities, e.g., soybean, copper, and so on. Here, we take soybean as an

example. Similar with iron ore, the dynamically changing spot price of soybean is significantly af-

fected by the balance between supply and demand, as well as some latent influential factors (named

as expectation factor). For the supply factor, we adopt three sources providing soybean, i.e., soy-

bean inventory in ports owned by trading companies, soybean import from overseas companies,

and domestic soybean sold in markets. For the demand factor, it is difficult to openly obtain ex-

plicit demand from purchasers due to trade secrets. Similar to the iron ore example, we analyze the

demand factor from the viewpoint of vessel transportation. The rationale behind is that the large

volume of soybean exports transported through large-size vessels can reflect the high demand of

soybean in the destination countries. For the expectation factor, we identify two important features

according to our prior knowledge and previous studies [39], i.e., political risk and environmen-

tal impact. When the political risks increase, a series of price factors may change substantially.

The environmental factors, e.g., weather conditions, also bring indirect effect on soybean price,

by affecting the soybean production, transportation, and then finally the soybean supply-demand

balance. In summary, through this application case, we demonstrate that it has potential to apply

our framework to other bulk commodities for a short-term price trend prediction.

8 CONCLUSION AND FUTURE WORK

Prediction on price trend of bulk commodities has significant meanings for economic development

worldwide, specifically for market participants and government administrators, to schedule plans,

adjust policies, save costs, and increase profits. In this article, we employ various cross-domain

open data to forecast the price trend of bulk commodities over multiple future days. The price

trend prediction problem is transformed to a three-class prediction problem: rise, slight-change,

and fall. We select the iron ore as an example of bulk commodities to present our analysis re-

sults and conduct experiments to demonstrate the effectiveness and efficiency of our proposed

method. We identify three factors based on prior knowledge and previous studies, i.e., supply fac-

tor, demand factor, and expectation factor. We then categorize all collected open data into the three

factors and validate their correlations with the price. Relevant features are selected and fed into

a proposed hybrid classification model, to achieve a sequentially three-class prediction of contin-

uous T business days. Finally, we conduct extensive experiments to evaluate the performance of

our framework using nine real-world cross-domain open datasets. Experimental results show that

our method achieves surpassing performance compared with state-of-the-art baselines.

In the future, we plan to broaden and deepen our work from two directions. First, we intend to

study a longer term price trend prediction for bulk commodities, with more cross-domain open

data. Second, we plan to introduce deep neural network-basedmodels for time-series data, to study

the application of these models in coarse-grained and insufficient economic-related data.
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